|
|
|
|
LEADER |
11395nam a22005413i 4500 |
001 |
EBC6995527 |
003 |
MiAaPQ |
005 |
20231204023224.0 |
006 |
m o d | |
007 |
cr cnu|||||||| |
008 |
231204s2022 xx o ||||0 eng d |
020 |
|
|
|a 9783031062490
|q (electronic bk.)
|
020 |
|
|
|z 9783031062483
|
035 |
|
|
|a (MiAaPQ)EBC6995527
|
035 |
|
|
|a (Au-PeEL)EBL6995527
|
035 |
|
|
|a (OCoLC)1328136466
|
040 |
|
|
|a MiAaPQ
|b eng
|e rda
|e pn
|c MiAaPQ
|d MiAaPQ
|
050 |
|
4 |
|a QA76.9.U83
|
100 |
1 |
|
|a Seifi, Hasti.
|
245 |
1 |
0 |
|a Haptics :
|b 13th International Conference on Human Haptic Sensing and Touch Enabled Computer Applications, EuroHaptics 2022, Hamburg, Germany, May 22-25, 2022, Proceedings.
|
250 |
|
|
|a 1st ed.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing AG,
|c 2022.
|
264 |
|
4 |
|c ©2022.
|
300 |
|
|
|a 1 online resource (527 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Lecture Notes in Computer Science Series ;
|v v.13235
|
505 |
0 |
|
|a Intro -- Preface -- Organization -- Contents -- Haptic Science -- Haptic Discrimination of Different Types of Soft Materials -- 1 Introduction -- 2 Methods -- 2.1 Participants -- 2.2 Setup and Materials -- 2.3 Design and Procedure -- 2.4 Data Analysis -- 3 Results -- 4 Discussion -- Appendix A -- References -- Moving Hands Feel Stimuli Before Stationary Hands -- 1 Introduction -- 2 Methods -- 2.1 Participants -- 2.2 Stimuli and Setup -- 2.3 Design and Procedure -- 2.4 Data Analysis -- 3 Results -- 4 Discussion -- References -- Perception of Friction in Tactile Exploration of Micro-structured Rubber Samples -- 1 Introduction -- 2 Experiments -- 3 Results -- 4 Conclusion -- References -- Influence of Prior Visual Information on Exploratory Movement Direction in Texture Perception -- 1 Introduction -- 2 Methodology -- 2.1 Participants -- 2.2 Stimuli and Setup -- 2.3 Procedure and Design -- 2.4 Data Analysis -- 3 Results -- 4 Discussion -- References -- Guidance for the Design of Vibrotactile Patterns for Use on the Human Back -- 1 Introduction -- 2 Relevant Perceptual Findings -- 2.1 Anisotropy -- 2.2 Temporal Aspects -- 2.3 Anchor Points -- 2.4 Resolution -- 2.5 Intensity -- 3 Design Recommendations -- 4 Conclusions -- References -- Speed Discrimination in the Apparent Haptic Motion Illusion -- 1 Introduction -- 1.1 Speed Perception and Impacting Parameters -- 1.2 Speed Perception of the Apparent Motion Illusion -- 1.3 Contribution -- 2 User Study -- 2.1 Experimental Set-Up and Stimulation Modes -- 2.2 Experimental Design -- 2.3 Experimental Procedure -- 3 Results -- 4 Discussion and Conclusions -- References -- Neutral Point in Haptic Perception of Softness -- 1 Introduction -- 2 Methods -- 2.1 Participants -- 2.2 Apparatus -- 2.3 Stimuli -- 2.4 Design and Procedure -- 2.5 Analysis -- 3 Results -- 4 Discussion -- References.
|
505 |
8 |
|
|a Pilot Study on Presenting Pulling Sensation by Electro-Tactile Stimulation -- 1 Introduction -- 2 Method -- 2.1 Electrical Stimulation Device -- 2.2 Stimulus Pattern -- 3 Experiment 1 -- 3.1 Experimental Procedure -- 3.2 Experimental Result -- 3.3 Discussion -- 4 Experiment 2 -- 4.1 Experimental Procedure -- 4.2 Experimental Result -- 4.3 Discussion -- 5 Conclusion -- References -- A Preliminary Study on the Perceptual Independence Between Vibrotactile and Thermal Senses -- 1 Introduction -- 2 Exp. 1: Unimodal Stimuli -- 2.1 Methods -- 2.2 Results and Discussion -- 3 Exp. 2: Multimodal Stimuli -- 3.1 Methods -- 3.2 Results and Discussion -- 4 Conclusions -- References -- Spatial Compatibility of Visual and Tactile Stimulation in Shared Haptic Perception -- 1 Introduction -- 2 Method -- 2.1 Experimental Setup -- 2.2 Conditions -- 2.3 Stimuli -- 2.4 Procedure and Analysis -- 3 Results -- 4 Discussion -- 5 Conclusions -- References -- Increasing Perceived Weight and Resistance by Applying Vibration to Tendons During Active Arm Movements -- 1 Introduction -- 2 Experiments -- 2.1 Apparatus -- 2.2 Tendon Vibration During Active Movements -- 2.3 Experiment 1: Increasing the Weight of a Handheld Object -- 2.4 Experiment 2: Increasing Resistance of a Handheld Object -- 3 Discussion -- 4 Conclusion -- References -- A Comparison of Haptic and Auditory Feedback as a Warning Signal for Slip in Tele-Operation Scenarios -- 1 Introduction -- 2 Material and Methods -- 2.1 Participants -- 2.2 Setup -- 2.3 Testing Auditory and Haptic Latencies -- 2.4 Paradigm -- 2.5 Data Analysis -- 3 Results -- 4 Discussion -- References -- Experiencing Touch by Technology -- 1 Introduction -- 2 Study 1. Interviews for the Experience Profiling -- 3 Study 2. Experience Profiling for Pressure Stimuli -- 4 Discussion and Conclusion -- References.
|
505 |
8 |
|
|a Effect of Focus Direction and Agency on Tactile Perceptibility -- 1 Introduction -- 2 Methods -- 2.1 Participants -- 2.2 Experimental Hardware -- 2.3 Experimental Conditions -- 2.4 Procedure -- 3 Results -- 4 Discussion -- 5 Conclusion -- References -- Haptic Technology -- Haptic Guidance for Teleoperation: Optimizing Performance and User Experience -- 1 Introduction -- 2 Methods -- 2.1 Apparatus -- 2.2 Sample, Experimental Setup and Tasks -- 2.3 Experimental Design and Procedure -- 2.4 Measures and Statistical Analysis -- 3 Results -- 3.1 Objective Performance Measures -- 3.2 Subjective Ratings -- 4 Discussion -- References -- A Multi-modal Haptic Armband for Finger-Level Sensory Feedback from a Prosthetic Hand -- 1 Introduction -- 2 Multi-modal Haptic Armband -- 2.1 Rendering of Feedback -- 2.2 Mechanisms of Feedback -- 3 Experimental Evaluation -- 4 Results and Discussion -- 5 Conclusion and Future Work -- References -- Sound Pressure Field Reconstruction for Ultrasound Phased Array by Linear Synthesis Scheme Optimization -- 1 Introduction -- 2 Methods -- 2.1 Linear Synthesis Scheme Optimization -- 2.2 Greedy Algorithm with Brute-Force Search -- 3 Experiments -- 3.1 Outline -- 3.2 Evaluations -- 4 Conclusion -- References -- A Rotary Induction Actuator for Kinesthetic and Tactile Rendering -- 1 Introduction -- 2 Eddy-Current Based Haptic Devices -- 3 Human Haptic Perception and the Design Requirements of an Ideal Haptic Interface -- 4 The Principle of Operation of the Axial-DSIM -- 5 Important Parameters and Considerations -- 6 The Design of the Axial-DSIM -- 6.1 The Primaries -- 6.2 The Winding Design -- 7 The Experimental Setup and the Shape of the Supply -- 8 The Experimental Results -- 9 Conclusion -- References -- Haptic Feedback for Wrist Angle Adjustment -- 1 Introduction -- 2 Vibrotactile Feedback on the Wrist Through a Wristband.
|
505 |
8 |
|
|a 3 Experimental Design -- 3.1 Participants -- 3.2 Procedure -- 3.3 Analysis -- 4 Results -- 5 Discussion and Conclusion -- References -- Larger Skin-Surface Contact Through a Fingertip Wearable Improves Roughness Perception -- 1 Introduction -- 2 Materials and Methods -- 3 Results -- 4 Discussion -- References -- Expanding Dynamic Range of Electrical Stimulation Using Anesthetic Cream -- 1 Introduction -- 2 Experiments and Result -- 2.1 Experiment 1 -- 2.2 Experiment 2 -- 2.3 Experiment 3 -- 3 Discussion -- 4 Conclusion -- References -- Haptic Rattle: Multi-modal Rendering of Virtual Objects Inside a Hollow Container -- 1 Introduction -- 2 Related Work -- 3 Methods -- 3.1 Apparatus -- 3.2 Acceleration-Based Rendering Model -- 4 User Study -- 4.1 Population, Materials and Setup -- 4.2 Experimental Conditions and Hypotheses -- 4.3 Results -- 5 Discussion and Conclusion -- References -- Design of a 2-DoF Haptic Device for Motion Guidance -- 1 Introduction -- 2 Device Design and Actuation -- 2.1 Mechanism and Structure -- 2.2 Kinematics Analysis -- 3 Experimental Evaluation -- 3.1 Setup -- 3.2 Participants -- 3.3 Procedure -- 3.4 Results -- 4 Discussion and Conclusions -- References -- Preliminary Design of a Flexible Haptic Surface -- 1 Introduction -- 2 Design of the Device -- 2.1 Design of the Haptic Pixel -- 2.2 Design of the Surface -- 3 Haptic Evaluation of the Device -- 3.1 Tribological Evaluation -- 3.2 Psychophysical Evaluation -- 4 Conclusion -- References -- Human Self-touch vs Other-Touch Resolved by Machine Learning -- 1 Introduction -- 1.1 Present Study -- 1.2 Signal Database -- 1.3 Feature Extraction -- 1.4 Performance Measures -- 1.5 Ambiguity and Abstention -- 2 Results -- 2.1 Relative Performance of Classification Techniques -- 2.2 Importance of Feature Extraction -- 2.3 Discussion and Conclusion -- References.
|
505 |
8 |
|
|a Investigating Movement-Related Tactile Suppression Using Commercial VR Controllers -- 1 Introduction -- 2 Methods -- 2.1 Participants -- 2.2 Apparatus -- 2.3 Experimental Task -- 2.4 Data Analysis -- 3 Results -- 4 Discussion -- References -- Estimation of Frictional Force Using the Thermal Images of Target Surface During Stroking -- 1 Introduction -- 2 Proposed Method -- 2.1 Problem Definition -- 2.2 Making Dataset -- 2.3 Machine Learning Model -- 3 Experiment -- 4 Results and Discussion -- 5 Conclusion -- References -- Spatial Resolution of Mesoscopic Shapes Presented by Airborne Ultrasound -- 1 Introduction -- 2 Methods -- 2.1 Overview of the Methods -- 2.2 Contact Position Change Method -- 2.3 Contact Strength Change Method -- 2.4 Ultrasound Focus Point Presentation Method -- 3 Experiment -- 3.1 System -- 3.2 Procedure -- 3.3 Results -- 3.4 Discussion -- 4 Conclusion -- References -- Haptic Applications -- Vibrotactile Similarity Perception in Crowdsourced and Lab Studies -- 1 Introduction -- 2 Stimuli and Apparatus -- 3 Similarity Rating Data Collection -- 4 Results -- 4.1 RQ1. How Comparable Are VT Similarity Ratings Obtained from Crowdsourced and Lab Studies? -- 4.2 RQ2. How Comparable Are Results from Android and iOS Smartphones Given Their Distinct VT Hardware and Software? -- 5 Discussion and Conclusion -- References -- Perception of Spatialized Vibrotactile Impacts in a Hand-Held Tangible for Virtual Reality -- 1 Introduction and Related Work -- 2 Experimental Design -- 2.1 Research Questions and Hypotheses -- 2.2 Rendering Impacts Distance and Direction -- 2.3 Materials and Methods -- 3 Results -- 4 Discussion -- 5 Conclusion and Perspectives -- References -- Wearable Haptics in a Modern VR Rehabilitation System: Design Comparison for Usability and Engagement -- 1 Introduction -- 2 Materials and Methods.
|
505 |
8 |
|
|a 2.1 Device 1: The Light Haptic Thimble.
|
588 |
|
|
|a Description based on publisher supplied metadata and other sources.
|
590 |
|
|
|a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Kappers, Astrid M. L.
|
700 |
1 |
|
|a Schneider, Oliver.
|
700 |
1 |
|
|a Drewing, Knut.
|
700 |
1 |
|
|a Pacchierotti, Claudio.
|
700 |
1 |
|
|a Abbasimoshaei, Alireza.
|
700 |
1 |
|
|a Huisman, Gijs.
|
700 |
1 |
|
|a Kern, Thorsten A.
|
776 |
0 |
8 |
|i Print version:
|a Seifi, Hasti
|t Haptics: Science, Technology, Applications
|d Cham : Springer International Publishing AG,c2022
|z 9783031062483
|
797 |
2 |
|
|a ProQuest (Firm)
|
830 |
|
0 |
|a Lecture Notes in Computer Science Series
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=6995527
|z Click to View
|