High Resolution Imaging in Microscopy and Ophthalmology : New Frontiers in Biomedical Optics.
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Cham :
Springer International Publishing AG,
2019.
|
Edition: | 1st ed. |
Subjects: | |
Online Access: | Click to View |
Table of Contents:
- Intro
- Foreword 1
- In Memoriam Dr. Gerhard Zinser
- Foreword 2
- Memories
- Preface
- Acknowledgment
- Contents
- Contributors
- Part I: Breaking the Diffraction Barrier in Fluorescence Microscopy
- 1: High-Resolution 3D Light Microscopy with STED and RESOLFT
- 1.1 Breaking the Diffraction Barrier in the Far-field Fluorescence Microscope
- 1.2 Recent Developments: Nanoscopy at the MINimum
- References
- Part II: Retinal Imaging and Image Guided Retina Treatment
- 2: Scanning Laser Ophthalmoscopy (SLO)
- 2.1 Introduction and Technology
- 2.1.1 History
- 2.1.2 Modern Confocal SLO
- 2.1.3 SLO Core Components
- 2.1.3.1 Laser Source
- 2.1.3.2 Scan Unit
- 2.1.3.3 Beam Splitter
- 2.1.3.4 Imaging Optics
- 2.1.3.5 Detectors
- 2.1.4 Resolution of the SLO
- 2.1.4.1 Limitations and Numerical Aperture (NA) of the Eye
- 2.1.4.2 Fraunhofer Diffraction at a Circular Aperture
- 2.1.4.3 Beam Waist for Propagating Gaussian Beam
- 2.1.4.4 Resolution Improvement Due to Confocal Detection
- 2.1.5 Example for High Resolution SLO Image
- 2.2 Laser Scanning Tomography
- 2.2.1 HRTII/HRT3 Acquisition Work Flow
- 2.2.2 HRTII/HRT3 Data Processing
- 2.2.3 Contour Line, Reference Plane and Stereometric Parameters
- 2.2.4 Analysis of HRT Optic Nerve Head (ONH) Data
- 2.2.4.1 ONH Classification Based on Moorfields Regression Analysis
- 2.2.4.2 Follow-Up and Progression Analysis
- 2.2.5 Summary SLT for Glaucoma Diagnostics
- 2.3 Widefield Indocyanine Green Angiography (ICGA)
- 2.4 Quantitative Autofluorescence of the Retina
- 2.4.1 Origin and Spectral Characteristics of Fundus Auto-Fluorescence (AF)
- 2.4.2 Quantitative Auto-Fluorescence (AF) Imaging
- 2.4.3 Research Studies
- 2.5 Summary and Conclusion
- References
- 3: Optical Coherence Tomography (OCT): Principle and Technical Realization.
- 3.1 Introduction
- 3.2 Technique and Theory of OCT
- 3.2.1 Principle Idea of OCT
- 3.2.2 Technical realizations of OCT
- 3.2.3 Signal formation in OCT
- 3.2.4 Lateral and Axial Resolution and Image Dimensions
- 3.2.5 Sensitivity and Roll-Off
- 3.2.6 Signal Averaging and Speckle
- 3.3 SPECTRALIS OCT
- 3.4 Additional OCT Contrast Mechanisms and New Technologies
- 3.4.1 OCT Angiography (OCTA)
- 3.4.2 Quantitative Measurement of Retinal Blood Flow
- 3.4.3 OCT with Visible Light (Vis-OCT)
- 3.4.3.1 Resolution
- 3.4.3.2 Spectral Imaging, Oximetry
- 3.4.4 OCT Elastography (OCE)
- 3.4.5 Polarization Sensitive OCT (PS-OCT)
- 3.4.6 Adaptive Optics OCT (AO-OCT)
- 3.4.7 High Speed OCT
- 3.4.7.1 Fourier Domain Mode Locked (FDML) Lasers with MHz Sweep Rate
- 3.4.7.2 Parallelization of OCT Data Acquisition
- 3.5 Summary and Conclusion
- References
- 4: Ophthalmic Diagnostic Imaging: Retina
- 4.1 Introduction
- 4.2 Application of OCT in Retinal Diagnostics
- 4.2.1 Age-Related Macular Degeneration
- 4.2.2 Diabetic Retinopathy and Macular Edema
- 4.2.3 Retinal Vascular Occlusions and Other Vascular Conditions
- 4.2.4 Central Serous Chorioretinopathy and Related Diseases
- 4.2.5 Pathologic Myopia
- 4.2.6 Inherited Retinal Diseases and Other Macular Conditions
- 4.2.7 Intraocular Tumors
- 4.2.8 Inflammatory Diseases, Intermediate and Posterior Uveitis
- 4.2.9 Vitreoretinal Interface
- 4.3 Pitfalls of OCT in Retinal Diagnostics
- 4.3.1 Acquisition Protocol
- 4.3.2 Acquisition Technique
- 4.3.3 Interpretation
- 4.4 Summary and Outlook
- References
- 5: Ophthalmic Diagnostic Imaging: Glaucoma
- 5.1 Introduction
- 5.2 The Heidelberg Retina Tomograph: Confocal Scanning Laser Ophthalmoscope (cSLO)
- 5.2.1 Clinical Development
- 5.2.2 Clinical Validation.
- 5.2.3 Surrogate Endpoints and Progression
- 5.2.4 Summary
- 5.3 SPECTRALIS SD-OCT
- 5.3.1 Clinical Assessment of Optic Nerve Head Parameters
- 5.3.2 Bruch's Membrane Opening (BMO) in SD-OCT-Based Neuroretinal Rim Measurements
- 5.3.3 Anatomic Variation: Position of the Fovea Relative to the Center of the ONH
- 5.3.4 Anatomic Variation: ONH size and Ocular Magnification Impact RNFL Measurements
- 5.3.5 Factors that May Confound Measurements and Classifications: Age, Axial length, and Tilted Discs
- 5.3.6 Posterior Pole: Macular and Asymmetry Analyses
- 5.3.7 Detection of Glaucomatous Progression with OCT
- 5.3.8 Summary
- 5.4 Summary and Outlook
- References
- 6: OCT Angiography (OCTA) in Retinal Diagnostics
- 6.1 Introduction
- 6.2 Technical Foundation for Clinical OCTA Imaging
- 6.2.1 OCTA Signal Processing and Image Construction
- 6.2.2 OCTA Data Visualization
- 6.2.3 Projection Methods
- 6.2.4 Retinal Vascular Plexuses
- 6.2.5 Quantification of OCTA Data
- 6.3 Image Artifacts and Countermeasures
- 6.3.1 Projection Artifacts
- 6.3.2 Segmentation Artifacts
- 6.3.3 Motion Artifacts
- 6.3.4 Lateral and Axial Resolution
- 6.4 Clinical Application of OCTA
- 6.4.1 Diabetic Retinopathy
- 6.4.2 Retinal Vein Occlusion
- 6.4.3 Macular Telangiectasia
- 6.4.4 Age Related Macular Degeneration
- 6.5 Conclusion
- References
- 7: OCT-Based Velocimetry for Blood Flow Quantification
- 7.1 Introduction
- 7.2 Clinical Potential for OCT-Based Retinal Blood Flow Measurements
- 7.3 Measuring Blood Flow with OCT
- 7.3.1 Phase-Based Methods
- 7.3.1.1 Theory
- 7.3.1.2 Application to Retinal Imaging
- Circumpapillary Scan
- En Face Plane Doppler OCT
- Multiple Beam Doppler OCT
- Digital Filtering in Full Field OCT
- Analysis of the Doppler Frequency Bandwidth.
- 7.3.2 Amplitude Based Flow Quantification
- 7.3.2.1 Complex Amplitude: Dynamic Light Scattering Optical Coherence Tomography
- 7.3.2.2 Intensity: Speckle Decorrelation
- 7.3.2.3 Alternative Speckle Decorrelation Methods
- 7.4 Discussion and Conclusion
- References
- 8: In Vivo FF-SS-OCT Optical Imaging of Physiological Responses to Photostimulation of Human Photoreceptor Cells
- 8.1 Introduction
- 8.2 Holographic Optical Coherence Tomography
- 8.2.1 Optical Setup
- 8.2.2 Data Evaluation
- 8.3 IOS of the Human Photoreceptor Cells
- 8.3.1 Molecular Origin
- 8.3.2 Technical Limitations of FF-SS-OCT
- 8.3.3 Outlook
- References
- 9: Two-Photon Scanning Laser Ophthalmoscope
- 9.1 Introduction
- 9.1.1 Retinal Signaling
- 9.1.2 Imaging Retinal Neurons
- 9.1.3 Imaging Other Retinal Cell Types In Vivo
- 9.2 Theoretical Background
- 9.2.1 Luminescence, SPA and TPA
- 9.2.2 TPA Probability and Dependencies
- 9.2.3 Optical Resolution
- 9.2.4 Linear SPA vs. Nonlinear TPA Imaging
- 9.3 Experimental Setup and Results
- 9.4 Future Application of Two-Photon Scanning Laser Ophthalmoscopy
- References
- 10: Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO)
- 10.1 Introduction
- 10.2 Technical Realization Based on the Spectralis Platform
- 10.3 Clinical Applications I: The Healthy Eye
- 10.3.1 Macular Pigment
- 10.4 Clinical Applications II: AMD and Retinal Dystrophies
- 10.4.1 Age-Related Macular Degeneration
- 10.4.2 Retinal Dystrophies
- 10.5 Clinical Applications III: Macula Telangiectasia
- 10.5.1 Macular Telangiectasia
- 10.6 Clinical Applications IV: Diabetic Retinopathy
- 10.7 Conclusion and Summary
- References
- 11: Selective Retina Therapy
- 11.1 Retinal Therapy: A Short Historic Overview
- 11.2 The Concept and State of the Art of Selective Retina Therapy.
- 11.2.1 Experimental Results
- 11.2.2 Clinical Study Results
- 11.2.3 Dosimetry and Dosing Control
- 11.3 OCT for SRT Dosimetry
- 11.3.1 Hypothesis of Fringe Washouts in M-Scan OCT
- 11.3.2 First Pre-clinical and Clinical Studies
- 11.3.3 Future Developments Towards Reliably Detecting the Microbubble Threshold with OCT
- 11.4 SRT Module Integration into the OCT Platform
- 11.5 Conclusions and Outlook
- References
- Part III: Anterior Segment Imaging and Image Guided Treatment
- 12: In Vivo Confocal Scanning Laser Microscopy
- 12.1 Introduction
- 12.2 Principle of Confocal Scanning Laser Microscopy
- 12.3 In Vivo cSLM with the Rostock Cornea Module
- 12.4 Ophthalmological Applications
- 12.4.1 Diagnoses of Keratomycosis
- 12.4.2 Subbasal Nerve Plexus
- 12.4.3 Corneal Keratocyte: A Neglected Entity of Cells
- 12.4.4 cSLM for Animal Studies
- 12.4.5 Interdisciplinary Research
- 12.5 Non-ophthalmological Applications
- 12.6 Current and Future Developments
- 12.6.1 Subbasal Nerve Plexus Mosaicking
- 12.6.2 Slit Lamp Microscopy on a Cellular Level Using In Vivo Confocal Laser Scanning Microscopy
- 12.6.3 OCT-Guided In Vivo Confocal Laser Scanning Microscopy
- 12.6.4 Multiphoton Microscopy
- 12.7 Summary
- References
- 13: Anterior Segment OCT
- 13.1 Introduction
- 13.2 Anterior Segment Spectral-Domain OCT (SD-OCT)
- 13.3 Anterior Segment Swept Source OCT (SS-OCT)
- 13.3.1 SS-OCT and Cornea Evaluation
- 13.3.2 SS-OCT and Cataract Evaluation
- 13.3.3 SS-OCT and Anterior Chamber Evaluation
- 13.3.4 SS-OCT and Anterior Segment Imaging
- 13.4 Summary and Outlook
- References
- 14: Femtosecond-Laser-Assisted Cataract Surgery (FLACS)
- 14.1 Introduction
- 14.2 Cataract and Surgery
- 14.3 History of Femtosecond-Laser-Assisted Cataract Surgery.
- 14.4 All-Solid-State Chirped-Pulse-Amplification Femtosecond Laser.