High Resolution Imaging in Microscopy and Ophthalmology : New Frontiers in Biomedical Optics.

Bibliographic Details
Main Author: Bille, Josef F.
Format: eBook
Language:English
Published: Cham : Springer International Publishing AG, 2019.
Edition:1st ed.
Subjects:
Online Access:Click to View
Table of Contents:
  • Intro
  • Foreword 1
  • In Memoriam Dr. Gerhard Zinser
  • Foreword 2
  • Memories
  • Preface
  • Acknowledgment
  • Contents
  • Contributors
  • Part I: Breaking the Diffraction Barrier in Fluorescence Microscopy
  • 1: High-Resolution 3D Light Microscopy with STED and RESOLFT
  • 1.1 Breaking the Diffraction Barrier in the Far-field Fluorescence Microscope
  • 1.2 Recent Developments: Nanoscopy at the MINimum
  • References
  • Part II: Retinal Imaging and Image Guided Retina Treatment
  • 2: Scanning Laser Ophthalmoscopy (SLO)
  • 2.1 Introduction and Technology
  • 2.1.1 History
  • 2.1.2 Modern Confocal SLO
  • 2.1.3 SLO Core Components
  • 2.1.3.1 Laser Source
  • 2.1.3.2 Scan Unit
  • 2.1.3.3 Beam Splitter
  • 2.1.3.4 Imaging Optics
  • 2.1.3.5 Detectors
  • 2.1.4 Resolution of the SLO
  • 2.1.4.1 Limitations and Numerical Aperture (NA) of the Eye
  • 2.1.4.2 Fraunhofer Diffraction at a Circular Aperture
  • 2.1.4.3 Beam Waist for Propagating Gaussian Beam
  • 2.1.4.4 Resolution Improvement Due to Confocal Detection
  • 2.1.5 Example for High Resolution SLO Image
  • 2.2 Laser Scanning Tomography
  • 2.2.1 HRTII/HRT3 Acquisition Work Flow
  • 2.2.2 HRTII/HRT3 Data Processing
  • 2.2.3 Contour Line, Reference Plane and Stereometric Parameters
  • 2.2.4 Analysis of HRT Optic Nerve Head (ONH) Data
  • 2.2.4.1 ONH Classification Based on Moorfields Regression Analysis
  • 2.2.4.2 Follow-Up and Progression Analysis
  • 2.2.5 Summary SLT for Glaucoma Diagnostics
  • 2.3 Widefield Indocyanine Green Angiography (ICGA)
  • 2.4 Quantitative Autofluorescence of the Retina
  • 2.4.1 Origin and Spectral Characteristics of Fundus Auto-Fluorescence (AF)
  • 2.4.2 Quantitative Auto-Fluorescence (AF) Imaging
  • 2.4.3 Research Studies
  • 2.5 Summary and Conclusion
  • References
  • 3: Optical Coherence Tomography (OCT): Principle and Technical Realization.
  • 3.1 Introduction
  • 3.2 Technique and Theory of OCT
  • 3.2.1 Principle Idea of OCT
  • 3.2.2 Technical realizations of OCT
  • 3.2.3 Signal formation in OCT
  • 3.2.4 Lateral and Axial Resolution and Image Dimensions
  • 3.2.5 Sensitivity and Roll-Off
  • 3.2.6 Signal Averaging and Speckle
  • 3.3 SPECTRALIS OCT
  • 3.4 Additional OCT Contrast Mechanisms and New Technologies
  • 3.4.1 OCT Angiography (OCTA)
  • 3.4.2 Quantitative Measurement of Retinal Blood Flow
  • 3.4.3 OCT with Visible Light (Vis-OCT)
  • 3.4.3.1 Resolution
  • 3.4.3.2 Spectral Imaging, Oximetry
  • 3.4.4 OCT Elastography (OCE)
  • 3.4.5 Polarization Sensitive OCT (PS-OCT)
  • 3.4.6 Adaptive Optics OCT (AO-OCT)
  • 3.4.7 High Speed OCT
  • 3.4.7.1 Fourier Domain Mode Locked (FDML) Lasers with MHz Sweep Rate
  • 3.4.7.2 Parallelization of OCT Data Acquisition
  • 3.5 Summary and Conclusion
  • References
  • 4: Ophthalmic Diagnostic Imaging: Retina
  • 4.1 Introduction
  • 4.2 Application of OCT in Retinal Diagnostics
  • 4.2.1 Age-Related Macular Degeneration
  • 4.2.2 Diabetic Retinopathy and Macular Edema
  • 4.2.3 Retinal Vascular Occlusions and Other Vascular Conditions
  • 4.2.4 Central Serous Chorioretinopathy and Related Diseases
  • 4.2.5 Pathologic Myopia
  • 4.2.6 Inherited Retinal Diseases and Other Macular Conditions
  • 4.2.7 Intraocular Tumors
  • 4.2.8 Inflammatory Diseases, Intermediate and Posterior Uveitis
  • 4.2.9 Vitreoretinal Interface
  • 4.3 Pitfalls of OCT in Retinal Diagnostics
  • 4.3.1 Acquisition Protocol
  • 4.3.2 Acquisition Technique
  • 4.3.3 Interpretation
  • 4.4 Summary and Outlook
  • References
  • 5: Ophthalmic Diagnostic Imaging: Glaucoma
  • 5.1 Introduction
  • 5.2 The Heidelberg Retina Tomograph: Confocal Scanning Laser Ophthalmoscope (cSLO)
  • 5.2.1 Clinical Development
  • 5.2.2 Clinical Validation.
  • 5.2.3 Surrogate Endpoints and Progression
  • 5.2.4 Summary
  • 5.3 SPECTRALIS SD-OCT
  • 5.3.1 Clinical Assessment of Optic Nerve Head Parameters
  • 5.3.2 Bruch's Membrane Opening (BMO) in SD-OCT-Based Neuroretinal Rim Measurements
  • 5.3.3 Anatomic Variation: Position of the Fovea Relative to the Center of the ONH
  • 5.3.4 Anatomic Variation: ONH size and Ocular Magnification Impact RNFL Measurements
  • 5.3.5 Factors that May Confound Measurements and Classifications: Age, Axial length, and Tilted Discs
  • 5.3.6 Posterior Pole: Macular and Asymmetry Analyses
  • 5.3.7 Detection of Glaucomatous Progression with OCT
  • 5.3.8 Summary
  • 5.4 Summary and Outlook
  • References
  • 6: OCT Angiography (OCTA) in Retinal Diagnostics
  • 6.1 Introduction
  • 6.2 Technical Foundation for Clinical OCTA Imaging
  • 6.2.1 OCTA Signal Processing and Image Construction
  • 6.2.2 OCTA Data Visualization
  • 6.2.3 Projection Methods
  • 6.2.4 Retinal Vascular Plexuses
  • 6.2.5 Quantification of OCTA Data
  • 6.3 Image Artifacts and Countermeasures
  • 6.3.1 Projection Artifacts
  • 6.3.2 Segmentation Artifacts
  • 6.3.3 Motion Artifacts
  • 6.3.4 Lateral and Axial Resolution
  • 6.4 Clinical Application of OCTA
  • 6.4.1 Diabetic Retinopathy
  • 6.4.2 Retinal Vein Occlusion
  • 6.4.3 Macular Telangiectasia
  • 6.4.4 Age Related Macular Degeneration
  • 6.5 Conclusion
  • References
  • 7: OCT-Based Velocimetry for Blood Flow Quantification
  • 7.1 Introduction
  • 7.2 Clinical Potential for OCT-Based Retinal Blood Flow Measurements
  • 7.3 Measuring Blood Flow with OCT
  • 7.3.1 Phase-Based Methods
  • 7.3.1.1 Theory
  • 7.3.1.2 Application to Retinal Imaging
  • Circumpapillary Scan
  • En Face Plane Doppler OCT
  • Multiple Beam Doppler OCT
  • Digital Filtering in Full Field OCT
  • Analysis of the Doppler Frequency Bandwidth.
  • 7.3.2 Amplitude Based Flow Quantification
  • 7.3.2.1 Complex Amplitude: Dynamic Light Scattering Optical Coherence Tomography
  • 7.3.2.2 Intensity: Speckle Decorrelation
  • 7.3.2.3 Alternative Speckle Decorrelation Methods
  • 7.4 Discussion and Conclusion
  • References
  • 8: In Vivo FF-SS-OCT Optical Imaging of Physiological Responses to Photostimulation of Human Photoreceptor Cells
  • 8.1 Introduction
  • 8.2 Holographic Optical Coherence Tomography
  • 8.2.1 Optical Setup
  • 8.2.2 Data Evaluation
  • 8.3 IOS of the Human Photoreceptor Cells
  • 8.3.1 Molecular Origin
  • 8.3.2 Technical Limitations of FF-SS-OCT
  • 8.3.3 Outlook
  • References
  • 9: Two-Photon Scanning Laser Ophthalmoscope
  • 9.1 Introduction
  • 9.1.1 Retinal Signaling
  • 9.1.2 Imaging Retinal Neurons
  • 9.1.3 Imaging Other Retinal Cell Types In Vivo
  • 9.2 Theoretical Background
  • 9.2.1 Luminescence, SPA and TPA
  • 9.2.2 TPA Probability and Dependencies
  • 9.2.3 Optical Resolution
  • 9.2.4 Linear SPA vs. Nonlinear TPA Imaging
  • 9.3 Experimental Setup and Results
  • 9.4 Future Application of  Two-Photon Scanning Laser Ophthalmoscopy
  • References
  • 10: Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO)
  • 10.1 Introduction
  • 10.2 Technical Realization Based on the Spectralis Platform
  • 10.3 Clinical Applications I: The Healthy Eye
  • 10.3.1 Macular Pigment
  • 10.4 Clinical Applications II: AMD and Retinal Dystrophies
  • 10.4.1 Age-Related Macular Degeneration
  • 10.4.2 Retinal Dystrophies
  • 10.5 Clinical Applications III: Macula Telangiectasia
  • 10.5.1 Macular Telangiectasia
  • 10.6 Clinical Applications IV: Diabetic Retinopathy
  • 10.7 Conclusion and Summary
  • References
  • 11: Selective Retina Therapy
  • 11.1 Retinal Therapy: A Short Historic Overview
  • 11.2 The Concept and State of the Art of Selective Retina Therapy.
  • 11.2.1 Experimental Results
  • 11.2.2 Clinical Study Results
  • 11.2.3 Dosimetry and Dosing Control
  • 11.3 OCT for SRT Dosimetry
  • 11.3.1 Hypothesis of Fringe Washouts in M-Scan OCT
  • 11.3.2 First Pre-clinical and Clinical Studies
  • 11.3.3 Future Developments Towards Reliably Detecting the Microbubble Threshold with OCT
  • 11.4 SRT Module Integration into the OCT Platform
  • 11.5 Conclusions and Outlook
  • References
  • Part III: Anterior Segment Imaging and Image Guided Treatment
  • 12: In Vivo Confocal Scanning Laser Microscopy
  • 12.1 Introduction
  • 12.2 Principle of Confocal Scanning Laser Microscopy
  • 12.3 In Vivo cSLM with the Rostock Cornea Module
  • 12.4 Ophthalmological Applications
  • 12.4.1 Diagnoses of Keratomycosis
  • 12.4.2 Subbasal Nerve Plexus
  • 12.4.3 Corneal Keratocyte: A Neglected Entity of Cells
  • 12.4.4 cSLM for Animal Studies
  • 12.4.5 Interdisciplinary Research
  • 12.5 Non-ophthalmological Applications
  • 12.6 Current and Future Developments
  • 12.6.1 Subbasal Nerve Plexus Mosaicking
  • 12.6.2 Slit Lamp Microscopy on a Cellular Level Using In Vivo Confocal Laser Scanning Microscopy
  • 12.6.3 OCT-Guided In Vivo Confocal Laser Scanning Microscopy
  • 12.6.4 Multiphoton Microscopy
  • 12.7 Summary
  • References
  • 13: Anterior Segment OCT
  • 13.1 Introduction
  • 13.2 Anterior Segment Spectral-Domain OCT (SD-OCT)
  • 13.3 Anterior Segment Swept Source OCT (SS-OCT)
  • 13.3.1 SS-OCT and Cornea Evaluation
  • 13.3.2 SS-OCT and Cataract Evaluation
  • 13.3.3 SS-OCT and Anterior Chamber Evaluation
  • 13.3.4 SS-OCT and Anterior Segment Imaging
  • 13.4 Summary and Outlook
  • References
  • 14: Femtosecond-Laser-Assisted Cataract Surgery (FLACS)
  • 14.1 Introduction
  • 14.2 Cataract and Surgery
  • 14.3 History of Femtosecond-Laser-Assisted Cataract Surgery.
  • 14.4 All-Solid-State Chirped-Pulse-Amplification Femtosecond Laser.