|
|
|
|
LEADER |
11092nam a22004453i 4500 |
001 |
EBC5923749 |
003 |
MiAaPQ |
005 |
20231204023214.0 |
006 |
m o d | |
007 |
cr cnu|||||||| |
008 |
231204s2019 xx o ||||0 eng d |
020 |
|
|
|a 9783030166380
|q (electronic bk.)
|
020 |
|
|
|z 9783030166373
|
035 |
|
|
|a (MiAaPQ)EBC5923749
|
035 |
|
|
|a (Au-PeEL)EBL5923749
|
035 |
|
|
|a (OCoLC)1117773666
|
040 |
|
|
|a MiAaPQ
|b eng
|e rda
|e pn
|c MiAaPQ
|d MiAaPQ
|
050 |
|
4 |
|a RE1-994
|
082 |
0 |
|
|a 616.0758
|
100 |
1 |
|
|a Bille, Josef F.
|
245 |
1 |
0 |
|a High Resolution Imaging in Microscopy and Ophthalmology :
|b New Frontiers in Biomedical Optics.
|
250 |
|
|
|a 1st ed.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing AG,
|c 2019.
|
264 |
|
4 |
|c ©2019.
|
300 |
|
|
|a 1 online resource (411 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Intro -- Foreword 1 -- In Memoriam Dr. Gerhard Zinser -- Foreword 2 -- Memories -- Preface -- Acknowledgment -- Contents -- Contributors -- Part I: Breaking the Diffraction Barrier in Fluorescence Microscopy -- 1: High-Resolution 3D Light Microscopy with STED and RESOLFT -- 1.1 Breaking the Diffraction Barrier in the Far-field Fluorescence Microscope -- 1.2 Recent Developments: Nanoscopy at the MINimum -- References -- Part II: Retinal Imaging and Image Guided Retina Treatment -- 2: Scanning Laser Ophthalmoscopy (SLO) -- 2.1 Introduction and Technology -- 2.1.1 History -- 2.1.2 Modern Confocal SLO -- 2.1.3 SLO Core Components -- 2.1.3.1 Laser Source -- 2.1.3.2 Scan Unit -- 2.1.3.3 Beam Splitter -- 2.1.3.4 Imaging Optics -- 2.1.3.5 Detectors -- 2.1.4 Resolution of the SLO -- 2.1.4.1 Limitations and Numerical Aperture (NA) of the Eye -- 2.1.4.2 Fraunhofer Diffraction at a Circular Aperture -- 2.1.4.3 Beam Waist for Propagating Gaussian Beam -- 2.1.4.4 Resolution Improvement Due to Confocal Detection -- 2.1.5 Example for High Resolution SLO Image -- 2.2 Laser Scanning Tomography -- 2.2.1 HRTII/HRT3 Acquisition Work Flow -- 2.2.2 HRTII/HRT3 Data Processing -- 2.2.3 Contour Line, Reference Plane and Stereometric Parameters -- 2.2.4 Analysis of HRT Optic Nerve Head (ONH) Data -- 2.2.4.1 ONH Classification Based on Moorfields Regression Analysis -- 2.2.4.2 Follow-Up and Progression Analysis -- 2.2.5 Summary SLT for Glaucoma Diagnostics -- 2.3 Widefield Indocyanine Green Angiography (ICGA) -- 2.4 Quantitative Autofluorescence of the Retina -- 2.4.1 Origin and Spectral Characteristics of Fundus Auto-Fluorescence (AF) -- 2.4.2 Quantitative Auto-Fluorescence (AF) Imaging -- 2.4.3 Research Studies -- 2.5 Summary and Conclusion -- References -- 3: Optical Coherence Tomography (OCT): Principle and Technical Realization.
|
505 |
8 |
|
|a 3.1 Introduction -- 3.2 Technique and Theory of OCT -- 3.2.1 Principle Idea of OCT -- 3.2.2 Technical realizations of OCT -- 3.2.3 Signal formation in OCT -- 3.2.4 Lateral and Axial Resolution and Image Dimensions -- 3.2.5 Sensitivity and Roll-Off -- 3.2.6 Signal Averaging and Speckle -- 3.3 SPECTRALIS OCT -- 3.4 Additional OCT Contrast Mechanisms and New Technologies -- 3.4.1 OCT Angiography (OCTA) -- 3.4.2 Quantitative Measurement of Retinal Blood Flow -- 3.4.3 OCT with Visible Light (Vis-OCT) -- 3.4.3.1 Resolution -- 3.4.3.2 Spectral Imaging, Oximetry -- 3.4.4 OCT Elastography (OCE) -- 3.4.5 Polarization Sensitive OCT (PS-OCT) -- 3.4.6 Adaptive Optics OCT (AO-OCT) -- 3.4.7 High Speed OCT -- 3.4.7.1 Fourier Domain Mode Locked (FDML) Lasers with MHz Sweep Rate -- 3.4.7.2 Parallelization of OCT Data Acquisition -- 3.5 Summary and Conclusion -- References -- 4: Ophthalmic Diagnostic Imaging: Retina -- 4.1 Introduction -- 4.2 Application of OCT in Retinal Diagnostics -- 4.2.1 Age-Related Macular Degeneration -- 4.2.2 Diabetic Retinopathy and Macular Edema -- 4.2.3 Retinal Vascular Occlusions and Other Vascular Conditions -- 4.2.4 Central Serous Chorioretinopathy and Related Diseases -- 4.2.5 Pathologic Myopia -- 4.2.6 Inherited Retinal Diseases and Other Macular Conditions -- 4.2.7 Intraocular Tumors -- 4.2.8 Inflammatory Diseases, Intermediate and Posterior Uveitis -- 4.2.9 Vitreoretinal Interface -- 4.3 Pitfalls of OCT in Retinal Diagnostics -- 4.3.1 Acquisition Protocol -- 4.3.2 Acquisition Technique -- 4.3.3 Interpretation -- 4.4 Summary and Outlook -- References -- 5: Ophthalmic Diagnostic Imaging: Glaucoma -- 5.1 Introduction -- 5.2 The Heidelberg Retina Tomograph: Confocal Scanning Laser Ophthalmoscope (cSLO) -- 5.2.1 Clinical Development -- 5.2.2 Clinical Validation.
|
505 |
8 |
|
|a 5.2.3 Surrogate Endpoints and Progression -- 5.2.4 Summary -- 5.3 SPECTRALIS SD-OCT -- 5.3.1 Clinical Assessment of Optic Nerve Head Parameters -- 5.3.2 Bruch's Membrane Opening (BMO) in SD-OCT-Based Neuroretinal Rim Measurements -- 5.3.3 Anatomic Variation: Position of the Fovea Relative to the Center of the ONH -- 5.3.4 Anatomic Variation: ONH size and Ocular Magnification Impact RNFL Measurements -- 5.3.5 Factors that May Confound Measurements and Classifications: Age, Axial length, and Tilted Discs -- 5.3.6 Posterior Pole: Macular and Asymmetry Analyses -- 5.3.7 Detection of Glaucomatous Progression with OCT -- 5.3.8 Summary -- 5.4 Summary and Outlook -- References -- 6: OCT Angiography (OCTA) in Retinal Diagnostics -- 6.1 Introduction -- 6.2 Technical Foundation for Clinical OCTA Imaging -- 6.2.1 OCTA Signal Processing and Image Construction -- 6.2.2 OCTA Data Visualization -- 6.2.3 Projection Methods -- 6.2.4 Retinal Vascular Plexuses -- 6.2.5 Quantification of OCTA Data -- 6.3 Image Artifacts and Countermeasures -- 6.3.1 Projection Artifacts -- 6.3.2 Segmentation Artifacts -- 6.3.3 Motion Artifacts -- 6.3.4 Lateral and Axial Resolution -- 6.4 Clinical Application of OCTA -- 6.4.1 Diabetic Retinopathy -- 6.4.2 Retinal Vein Occlusion -- 6.4.3 Macular Telangiectasia -- 6.4.4 Age Related Macular Degeneration -- 6.5 Conclusion -- References -- 7: OCT-Based Velocimetry for Blood Flow Quantification -- 7.1 Introduction -- 7.2 Clinical Potential for OCT-Based Retinal Blood Flow Measurements -- 7.3 Measuring Blood Flow with OCT -- 7.3.1 Phase-Based Methods -- 7.3.1.1 Theory -- 7.3.1.2 Application to Retinal Imaging -- Circumpapillary Scan -- En Face Plane Doppler OCT -- Multiple Beam Doppler OCT -- Digital Filtering in Full Field OCT -- Analysis of the Doppler Frequency Bandwidth.
|
505 |
8 |
|
|a 7.3.2 Amplitude Based Flow Quantification -- 7.3.2.1 Complex Amplitude: Dynamic Light Scattering Optical Coherence Tomography -- 7.3.2.2 Intensity: Speckle Decorrelation -- 7.3.2.3 Alternative Speckle Decorrelation Methods -- 7.4 Discussion and Conclusion -- References -- 8: In Vivo FF-SS-OCT Optical Imaging of Physiological Responses to Photostimulation of Human Photoreceptor Cells -- 8.1 Introduction -- 8.2 Holographic Optical Coherence Tomography -- 8.2.1 Optical Setup -- 8.2.2 Data Evaluation -- 8.3 IOS of the Human Photoreceptor Cells -- 8.3.1 Molecular Origin -- 8.3.2 Technical Limitations of FF-SS-OCT -- 8.3.3 Outlook -- References -- 9: Two-Photon Scanning Laser Ophthalmoscope -- 9.1 Introduction -- 9.1.1 Retinal Signaling -- 9.1.2 Imaging Retinal Neurons -- 9.1.3 Imaging Other Retinal Cell Types In Vivo -- 9.2 Theoretical Background -- 9.2.1 Luminescence, SPA and TPA -- 9.2.2 TPA Probability and Dependencies -- 9.2.3 Optical Resolution -- 9.2.4 Linear SPA vs. Nonlinear TPA Imaging -- 9.3 Experimental Setup and Results -- 9.4 Future Application of Two-Photon Scanning Laser Ophthalmoscopy -- References -- 10: Fluorescence Lifetime Imaging Ophthalmoscopy (FLIO) -- 10.1 Introduction -- 10.2 Technical Realization Based on the Spectralis Platform -- 10.3 Clinical Applications I: The Healthy Eye -- 10.3.1 Macular Pigment -- 10.4 Clinical Applications II: AMD and Retinal Dystrophies -- 10.4.1 Age-Related Macular Degeneration -- 10.4.2 Retinal Dystrophies -- 10.5 Clinical Applications III: Macula Telangiectasia -- 10.5.1 Macular Telangiectasia -- 10.6 Clinical Applications IV: Diabetic Retinopathy -- 10.7 Conclusion and Summary -- References -- 11: Selective Retina Therapy -- 11.1 Retinal Therapy: A Short Historic Overview -- 11.2 The Concept and State of the Art of Selective Retina Therapy.
|
505 |
8 |
|
|a 11.2.1 Experimental Results -- 11.2.2 Clinical Study Results -- 11.2.3 Dosimetry and Dosing Control -- 11.3 OCT for SRT Dosimetry -- 11.3.1 Hypothesis of Fringe Washouts in M-Scan OCT -- 11.3.2 First Pre-clinical and Clinical Studies -- 11.3.3 Future Developments Towards Reliably Detecting the Microbubble Threshold with OCT -- 11.4 SRT Module Integration into the OCT Platform -- 11.5 Conclusions and Outlook -- References -- Part III: Anterior Segment Imaging and Image Guided Treatment -- 12: In Vivo Confocal Scanning Laser Microscopy -- 12.1 Introduction -- 12.2 Principle of Confocal Scanning Laser Microscopy -- 12.3 In Vivo cSLM with the Rostock Cornea Module -- 12.4 Ophthalmological Applications -- 12.4.1 Diagnoses of Keratomycosis -- 12.4.2 Subbasal Nerve Plexus -- 12.4.3 Corneal Keratocyte: A Neglected Entity of Cells -- 12.4.4 cSLM for Animal Studies -- 12.4.5 Interdisciplinary Research -- 12.5 Non-ophthalmological Applications -- 12.6 Current and Future Developments -- 12.6.1 Subbasal Nerve Plexus Mosaicking -- 12.6.2 Slit Lamp Microscopy on a Cellular Level Using In Vivo Confocal Laser Scanning Microscopy -- 12.6.3 OCT-Guided In Vivo Confocal Laser Scanning Microscopy -- 12.6.4 Multiphoton Microscopy -- 12.7 Summary -- References -- 13: Anterior Segment OCT -- 13.1 Introduction -- 13.2 Anterior Segment Spectral-Domain OCT (SD-OCT) -- 13.3 Anterior Segment Swept Source OCT (SS-OCT) -- 13.3.1 SS-OCT and Cornea Evaluation -- 13.3.2 SS-OCT and Cataract Evaluation -- 13.3.3 SS-OCT and Anterior Chamber Evaluation -- 13.3.4 SS-OCT and Anterior Segment Imaging -- 13.4 Summary and Outlook -- References -- 14: Femtosecond-Laser-Assisted Cataract Surgery (FLACS) -- 14.1 Introduction -- 14.2 Cataract and Surgery -- 14.3 History of Femtosecond-Laser-Assisted Cataract Surgery.
|
505 |
8 |
|
|a 14.4 All-Solid-State Chirped-Pulse-Amplification Femtosecond Laser.
|
588 |
|
|
|a Description based on publisher supplied metadata and other sources.
|
590 |
|
|
|a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
|
655 |
|
4 |
|a Electronic books.
|
776 |
0 |
8 |
|i Print version:
|a Bille, Josef F.
|t High Resolution Imaging in Microscopy and Ophthalmology
|d Cham : Springer International Publishing AG,c2019
|z 9783030166373
|
797 |
2 |
|
|a ProQuest (Firm)
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=5923749
|z Click to View
|