Twin-Control : A Digital Twin Approach to Improve Machine Tools Lifecycle.

Bibliographic Details
Main Author: Armendia, Mikel.
Other Authors: Ghassempouri, Mani., Ozturk, Erdem., Peysson, Flavien.
Format: eBook
Language:English
Published: Cham : Springer International Publishing AG, 2019.
Edition:1st ed.
Subjects:
Online Access:Click to View
Table of Contents:
  • Intro
  • Foreword
  • Acknowledgements
  • Contents
  • Abbreviations
  • Introduction
  • Introduction
  • 1 Machine Tool: From the Digital Twin to the Cyber-Physical Systems
  • 1.1 Introduction
  • 1.2 Machine Tool Digital Twin
  • 1.2.1 Virtual Machining
  • 1.2.2 Virtual Machine Tool
  • 1.2.3 Life Cycle Features
  • 1.3 Monitoring and Data Management
  • 1.3.1 Local Monitoring and Data Management
  • 1.3.2 Network
  • 1.3.3 Data Analytics
  • 1.4 Cyber-Physical Systems in Machine Tools
  • 1.5 Conclusions
  • References
  • 2 Twin-Control Approach
  • 2.1 Introduction
  • 2.2 Twin-Control Architecture
  • 2.2.1 Integrated Simulation Tool
  • 2.2.2 Local Monitoring and Control System
  • 2.2.3 Fleet-Based Knowledge System
  • 2.3 Twin-Control Validation and Evaluation
  • 2.4 Conclusions
  • References
  • Virtual Representation of the Machine Tool and Machining Processes
  • 3 Virtualization of Machine Tools
  • 3.1 Introduction
  • 3.2 The Virtual Machine Tool Concept
  • 3.2.1 Structural Model
  • 3.2.2 Drive Train
  • 3.2.3 Spindle Model
  • 3.2.4 Modelling Principle
  • 3.2.5 Control
  • 3.3 Validation of the VMT
  • 3.3.1 Hammer Test (Comau Machine)
  • 3.3.2 Fast 1 Axis Motion (Comau Machine)
  • 3.4 Conclusions
  • References
  • 4 Modelling of Machining Processes
  • 4.1 Introduction
  • 4.2 Discrete Cutting Force Model
  • 4.2.1 Introduction
  • 4.2.2 Discretized Force Model
  • 4.2.3 Tool Cutting Forces
  • 4.2.4 Part Cutting Forces
  • 4.2.5 Cutting Trials
  • 4.2.6 Cutting Force Model Summary
  • 4.3 Stability Roadmap
  • 4.3.1 Dynamic Force Model
  • 4.3.2 Stability Roadmap Generation
  • 4.3.3 Stability Roadmap Trials
  • 4.3.4 Stability Roadmap Summary
  • 4.4 Surface Location Error Model
  • 4.4.1 Form Error Prediction
  • 4.4.2 Surface Location Error Calculation
  • 4.4.3 Surface Location Error Trials
  • 4.5 Process Model Simulation Interface.
  • 4.5.1 Process Model GUI Layout, Inputs and Options
  • 4.5.2 Process Model GUI Outputs
  • 4.6 Conclusions
  • References
  • 5 Towards Energy-Efficient Machine Tools Through the Development of the Twin-Control Energy Efficiency Module
  • 5.1 Introduction
  • 5.1.1 Energy Efficiency of Production Machines
  • 5.1.2 Scope of Investigation
  • 5.2 Theoretical Background
  • 5.2.1 Machine Simulation and Process Modelling
  • 5.2.2 Energy Demand Approximation of Production Machines
  • 5.2.3 Summary
  • 5.3 The Energy Efficiency Module
  • 5.3.1 Framework
  • 5.3.2 Key Elements
  • 5.4 Energy Simulation of Machine Tools
  • 5.4.1 Basic Principle
  • 5.4.2 Modelling the Machine Tool Components
  • 5.5 Implementation on EMAG VLC100Y Turning Machine
  • 5.6 Conclusions
  • References
  • 6 New Approach for Bearing Life Cycle Estimation and Control
  • 6.1 Introduction
  • 6.2 Theoretical Background
  • 6.3 End-of-Life Calculation Module
  • 6.4 Validation Tests
  • 6.4.1 Experimental Set-up
  • 6.4.2 Results
  • 6.4.3 Vibration Measurements
  • 6.5 Conclusions
  • References
  • Real Representation of the Machine Tool and Machining Processes
  • 7 Data Monitoring and Management for Machine Tools
  • 7.1 Introduction
  • 7.2 Monitored Equipment
  • 7.3 Implemented Monitoring Architecture
  • 7.4 Cloud Data Management
  • 7.5 Conclusions
  • Reference
  • 8 Behaviours Indicators of Machine Tools
  • 8.1 Introduction
  • 8.2 Extraction from Machining Raw Measurements
  • 8.2.1 Indicator Extraction Process
  • 8.2.2 Machine Operating Conditions
  • 8.2.3 Indicator Processing
  • 8.2.4 Example of Indicators
  • 8.3 Machine Tool Characterization Tests
  • 8.3.1 Diagonal Positioning Error Measurement
  • 8.3.2 Artefact Measurement Using Touch Probe
  • 8.3.3 Dynamic Stiffness Measurement of Tool/Part
  • 8.3.4 Feed Drive and Spindle Auto-Characterization
  • 8.4 Conclusions
  • References.
  • 9 Non-intrusive Load Monitoring on Component Level of a Machine Tool Using a Kalman Filter-Based Disaggregation Approach
  • 9.1 Introduction and Motivation
  • 9.2 Related Work
  • 9.3 Kalman Filter-Based Disaggregation Approach
  • 9.3.1 NILM Through Kalman Filter-Based Power Disaggregation
  • 9.3.2 Differentiation of Dynamic and Constant Electrical Power Consumers
  • 9.3.3 Extension of the Kalman Filter Using Peak Shaving and Damping Factors
  • 9.4 Implementation and Validation of the Presented NILM Approach
  • 9.5 Conclusion and Outlook
  • References
  • 10 Utilizing PLC Data for Workpiece Flaw Detection in Machine Tools
  • 10.1 Introduction
  • 10.2 Automated Quality Monitoring Using Drive-Based Data
  • 10.2.1 Information Flow and Evaluation Process
  • 10.2.2 Sensitivity Analysis and Signal Processing Steps
  • 10.2.3 Workpiece Flaw Detection
  • 10.2.4 Evaluation and Limits of the Presented Concept
  • 10.3 Influence of Tool Wear on Machine Drive-Based Signals
  • 10.4 Conclusions
  • References
  • Integration of the Twin Concept
  • 11 Simulation of Machining Operations Based on the VMT Concept
  • 11.1 Introduction
  • 11.2 Machining Module
  • 11.3 Coupling Architecture
  • 11.4 Simulation of Machining Sequences
  • 11.4.1 Simple Machining Process with the High-Speed Box-in-Box Machine
  • 11.4.2 Machining Process with Tool Change on a Multi-spindle Machine
  • 11.4.3 Industrial Machining Process
  • 11.5 Conclusions
  • References
  • 12 Cyber-Physical System to Improve Machining Process Performance
  • 12.1 Introduction
  • 12.2 Process Monitoring
  • 12.3 MT Operating Condition Adaptation for Life Increase
  • 12.4 Energy Monitoring System on Component Level
  • 12.5 Telegram Remote Control
  • 12.6 Adaptive Feed Rate Control
  • 12.7 CNC Simulation and Collision Avoidance System (CAS)
  • 12.8 Conclusions
  • References.
  • 13 Fleet-Wide Proactive Maintenance of Machine Tools
  • 13.1 Introduction
  • 13.1.1 Fleet-Wide Approach and Industrial Challenges
  • 13.1.2 Building the Fleet-Wide Approach
  • 13.2 Fleet-Wide Knowledge Base Architecture
  • 13.2.1 Machine Tool and Related Concepts Definition
  • 13.2.2 Functional and Dysfunctional Analysis
  • 13.2.3 Combination of the General Concepts and Analysis to Build Fleet-Wide Architecture
  • 13.3 Maintenance Platform Services
  • 13.3.1 Data Visualization Services
  • 13.3.2 Event Management Services
  • 13.3.3 Analysis and Investigation Service
  • 13.3.4 Knowledge and Information Sharing Service
  • 13.4 Conclusion
  • References
  • 14 Visualization of Simulated and Measured Process Data
  • 14.1 Introduction
  • 14.2 3D Volumetric Simulation
  • 14.3 3D Simulation and Interfaces Combined
  • 14.4 Additional Visualization Features
  • 14.5 Conclusions
  • References
  • From Theory to Practice
  • 15 Twin-Control Evaluation in Industrial Environment: Aerospace Use Case
  • 15.1 Introduction
  • 15.2 Use Case Description
  • 15.3 Evaluation Strategy
  • 15.4 Scenario of Use 1: Machine Tool Design
  • 15.4.1 Virtual Machine Tool with Integrated Process Models
  • 15.5 Scenario of Use 2: Process Design
  • 15.5.1 Virtual Machine Tool with Integrated Process Models
  • 15.6 Scenario of Use 3: Process Control
  • 15.6.1 Local Machine Tool and Process Monitoring and Control Device
  • 15.7 Scenario of Use 4: Maintenance
  • 15.7.1 Fleet Management System
  • 15.8 Conclusions
  • 16 Twin-Control Evaluation in Industrial Environment: Automotive Case
  • 16.1 Introduction
  • 16.2 Use Case Description
  • 16.3 Evaluation Strategy
  • 16.4 Scenario of Use 1: Machine Tool Design
  • 16.4.1 Virtual Machine Tool with Integrated Process Models
  • 16.4.2 Energy Efficiency Models
  • 16.5 Scenario of Use 2: Process Design
  • 16.5.1 Machining Process Models.
  • 16.6 Scenario of Use 3: Process Control
  • 16.6.1 Local Machine Tool and Process Monitoring and Control Device
  • 16.7 Scenario of Use 4: Maintenance
  • 16.7.1 Fleet Management System
  • 16.8 Scenario of Use 5: Quality Control
  • 16.8.1 Local Machine Tool and Process Monitoring and Control Device
  • 16.9 Conclusions
  • Conclusions and Next Steps.