|
|
|
|
LEADER |
09491nam a22004573i 4500 |
001 |
EBC5629344 |
003 |
MiAaPQ |
005 |
20231204023214.0 |
006 |
m o d | |
007 |
cr cnu|||||||| |
008 |
231204s2019 xx o ||||0 eng d |
020 |
|
|
|a 9783030022037
|q (electronic bk.)
|
020 |
|
|
|z 9783030022020
|
035 |
|
|
|a (MiAaPQ)EBC5629344
|
035 |
|
|
|a (Au-PeEL)EBL5629344
|
035 |
|
|
|a (OCoLC)1082474594
|
040 |
|
|
|a MiAaPQ
|b eng
|e rda
|e pn
|c MiAaPQ
|d MiAaPQ
|
050 |
|
4 |
|a TS1-2301
|
100 |
1 |
|
|a Armendia, Mikel.
|
245 |
1 |
0 |
|a Twin-Control :
|b A Digital Twin Approach to Improve Machine Tools Lifecycle.
|
250 |
|
|
|a 1st ed.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing AG,
|c 2019.
|
264 |
|
4 |
|c ©2019.
|
300 |
|
|
|a 1 online resource (298 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Intro -- Foreword -- Acknowledgements -- Contents -- Abbreviations -- Introduction -- Introduction -- 1 Machine Tool: From the Digital Twin to the Cyber-Physical Systems -- 1.1 Introduction -- 1.2 Machine Tool Digital Twin -- 1.2.1 Virtual Machining -- 1.2.2 Virtual Machine Tool -- 1.2.3 Life Cycle Features -- 1.3 Monitoring and Data Management -- 1.3.1 Local Monitoring and Data Management -- 1.3.2 Network -- 1.3.3 Data Analytics -- 1.4 Cyber-Physical Systems in Machine Tools -- 1.5 Conclusions -- References -- 2 Twin-Control Approach -- 2.1 Introduction -- 2.2 Twin-Control Architecture -- 2.2.1 Integrated Simulation Tool -- 2.2.2 Local Monitoring and Control System -- 2.2.3 Fleet-Based Knowledge System -- 2.3 Twin-Control Validation and Evaluation -- 2.4 Conclusions -- References -- Virtual Representation of the Machine Tool and Machining Processes -- 3 Virtualization of Machine Tools -- 3.1 Introduction -- 3.2 The Virtual Machine Tool Concept -- 3.2.1 Structural Model -- 3.2.2 Drive Train -- 3.2.3 Spindle Model -- 3.2.4 Modelling Principle -- 3.2.5 Control -- 3.3 Validation of the VMT -- 3.3.1 Hammer Test (Comau Machine) -- 3.3.2 Fast 1 Axis Motion (Comau Machine) -- 3.4 Conclusions -- References -- 4 Modelling of Machining Processes -- 4.1 Introduction -- 4.2 Discrete Cutting Force Model -- 4.2.1 Introduction -- 4.2.2 Discretized Force Model -- 4.2.3 Tool Cutting Forces -- 4.2.4 Part Cutting Forces -- 4.2.5 Cutting Trials -- 4.2.6 Cutting Force Model Summary -- 4.3 Stability Roadmap -- 4.3.1 Dynamic Force Model -- 4.3.2 Stability Roadmap Generation -- 4.3.3 Stability Roadmap Trials -- 4.3.4 Stability Roadmap Summary -- 4.4 Surface Location Error Model -- 4.4.1 Form Error Prediction -- 4.4.2 Surface Location Error Calculation -- 4.4.3 Surface Location Error Trials -- 4.5 Process Model Simulation Interface.
|
505 |
8 |
|
|a 4.5.1 Process Model GUI Layout, Inputs and Options -- 4.5.2 Process Model GUI Outputs -- 4.6 Conclusions -- References -- 5 Towards Energy-Efficient Machine Tools Through the Development of the Twin-Control Energy Efficiency Module -- 5.1 Introduction -- 5.1.1 Energy Efficiency of Production Machines -- 5.1.2 Scope of Investigation -- 5.2 Theoretical Background -- 5.2.1 Machine Simulation and Process Modelling -- 5.2.2 Energy Demand Approximation of Production Machines -- 5.2.3 Summary -- 5.3 The Energy Efficiency Module -- 5.3.1 Framework -- 5.3.2 Key Elements -- 5.4 Energy Simulation of Machine Tools -- 5.4.1 Basic Principle -- 5.4.2 Modelling the Machine Tool Components -- 5.5 Implementation on EMAG VLC100Y Turning Machine -- 5.6 Conclusions -- References -- 6 New Approach for Bearing Life Cycle Estimation and Control -- 6.1 Introduction -- 6.2 Theoretical Background -- 6.3 End-of-Life Calculation Module -- 6.4 Validation Tests -- 6.4.1 Experimental Set-up -- 6.4.2 Results -- 6.4.3 Vibration Measurements -- 6.5 Conclusions -- References -- Real Representation of the Machine Tool and Machining Processes -- 7 Data Monitoring and Management for Machine Tools -- 7.1 Introduction -- 7.2 Monitored Equipment -- 7.3 Implemented Monitoring Architecture -- 7.4 Cloud Data Management -- 7.5 Conclusions -- Reference -- 8 Behaviours Indicators of Machine Tools -- 8.1 Introduction -- 8.2 Extraction from Machining Raw Measurements -- 8.2.1 Indicator Extraction Process -- 8.2.2 Machine Operating Conditions -- 8.2.3 Indicator Processing -- 8.2.4 Example of Indicators -- 8.3 Machine Tool Characterization Tests -- 8.3.1 Diagonal Positioning Error Measurement -- 8.3.2 Artefact Measurement Using Touch Probe -- 8.3.3 Dynamic Stiffness Measurement of Tool/Part -- 8.3.4 Feed Drive and Spindle Auto-Characterization -- 8.4 Conclusions -- References.
|
505 |
8 |
|
|a 9 Non-intrusive Load Monitoring on Component Level of a Machine Tool Using a Kalman Filter-Based Disaggregation Approach -- 9.1 Introduction and Motivation -- 9.2 Related Work -- 9.3 Kalman Filter-Based Disaggregation Approach -- 9.3.1 NILM Through Kalman Filter-Based Power Disaggregation -- 9.3.2 Differentiation of Dynamic and Constant Electrical Power Consumers -- 9.3.3 Extension of the Kalman Filter Using Peak Shaving and Damping Factors -- 9.4 Implementation and Validation of the Presented NILM Approach -- 9.5 Conclusion and Outlook -- References -- 10 Utilizing PLC Data for Workpiece Flaw Detection in Machine Tools -- 10.1 Introduction -- 10.2 Automated Quality Monitoring Using Drive-Based Data -- 10.2.1 Information Flow and Evaluation Process -- 10.2.2 Sensitivity Analysis and Signal Processing Steps -- 10.2.3 Workpiece Flaw Detection -- 10.2.4 Evaluation and Limits of the Presented Concept -- 10.3 Influence of Tool Wear on Machine Drive-Based Signals -- 10.4 Conclusions -- References -- Integration of the Twin Concept -- 11 Simulation of Machining Operations Based on the VMT Concept -- 11.1 Introduction -- 11.2 Machining Module -- 11.3 Coupling Architecture -- 11.4 Simulation of Machining Sequences -- 11.4.1 Simple Machining Process with the High-Speed Box-in-Box Machine -- 11.4.2 Machining Process with Tool Change on a Multi-spindle Machine -- 11.4.3 Industrial Machining Process -- 11.5 Conclusions -- References -- 12 Cyber-Physical System to Improve Machining Process Performance -- 12.1 Introduction -- 12.2 Process Monitoring -- 12.3 MT Operating Condition Adaptation for Life Increase -- 12.4 Energy Monitoring System on Component Level -- 12.5 Telegram Remote Control -- 12.6 Adaptive Feed Rate Control -- 12.7 CNC Simulation and Collision Avoidance System (CAS) -- 12.8 Conclusions -- References.
|
505 |
8 |
|
|a 13 Fleet-Wide Proactive Maintenance of Machine Tools -- 13.1 Introduction -- 13.1.1 Fleet-Wide Approach and Industrial Challenges -- 13.1.2 Building the Fleet-Wide Approach -- 13.2 Fleet-Wide Knowledge Base Architecture -- 13.2.1 Machine Tool and Related Concepts Definition -- 13.2.2 Functional and Dysfunctional Analysis -- 13.2.3 Combination of the General Concepts and Analysis to Build Fleet-Wide Architecture -- 13.3 Maintenance Platform Services -- 13.3.1 Data Visualization Services -- 13.3.2 Event Management Services -- 13.3.3 Analysis and Investigation Service -- 13.3.4 Knowledge and Information Sharing Service -- 13.4 Conclusion -- References -- 14 Visualization of Simulated and Measured Process Data -- 14.1 Introduction -- 14.2 3D Volumetric Simulation -- 14.3 3D Simulation and Interfaces Combined -- 14.4 Additional Visualization Features -- 14.5 Conclusions -- References -- From Theory to Practice -- 15 Twin-Control Evaluation in Industrial Environment: Aerospace Use Case -- 15.1 Introduction -- 15.2 Use Case Description -- 15.3 Evaluation Strategy -- 15.4 Scenario of Use 1: Machine Tool Design -- 15.4.1 Virtual Machine Tool with Integrated Process Models -- 15.5 Scenario of Use 2: Process Design -- 15.5.1 Virtual Machine Tool with Integrated Process Models -- 15.6 Scenario of Use 3: Process Control -- 15.6.1 Local Machine Tool and Process Monitoring and Control Device -- 15.7 Scenario of Use 4: Maintenance -- 15.7.1 Fleet Management System -- 15.8 Conclusions -- 16 Twin-Control Evaluation in Industrial Environment: Automotive Case -- 16.1 Introduction -- 16.2 Use Case Description -- 16.3 Evaluation Strategy -- 16.4 Scenario of Use 1: Machine Tool Design -- 16.4.1 Virtual Machine Tool with Integrated Process Models -- 16.4.2 Energy Efficiency Models -- 16.5 Scenario of Use 2: Process Design -- 16.5.1 Machining Process Models.
|
505 |
8 |
|
|a 16.6 Scenario of Use 3: Process Control -- 16.6.1 Local Machine Tool and Process Monitoring and Control Device -- 16.7 Scenario of Use 4: Maintenance -- 16.7.1 Fleet Management System -- 16.8 Scenario of Use 5: Quality Control -- 16.8.1 Local Machine Tool and Process Monitoring and Control Device -- 16.9 Conclusions -- Conclusions and Next Steps.
|
588 |
|
|
|a Description based on publisher supplied metadata and other sources.
|
590 |
|
|
|a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Ghassempouri, Mani.
|
700 |
1 |
|
|a Ozturk, Erdem.
|
700 |
1 |
|
|a Peysson, Flavien.
|
776 |
0 |
8 |
|i Print version:
|a Armendia, Mikel
|t Twin-Control
|d Cham : Springer International Publishing AG,c2019
|z 9783030022020
|
797 |
2 |
|
|a ProQuest (Firm)
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=5629344
|z Click to View
|