|
|
|
|
LEADER |
08260nam a22004573i 4500 |
001 |
EBC5577618 |
003 |
MiAaPQ |
005 |
20231204023214.0 |
006 |
m o d | |
007 |
cr cnu|||||||| |
008 |
231204s2016 xx o ||||0 eng d |
020 |
|
|
|a 9783319297941
|q (electronic bk.)
|
020 |
|
|
|z 9783319297927
|
035 |
|
|
|a (MiAaPQ)EBC5577618
|
035 |
|
|
|a (Au-PeEL)EBL5577618
|
035 |
|
|
|a (OCoLC)958064781
|
040 |
|
|
|a MiAaPQ
|b eng
|e rda
|e pn
|c MiAaPQ
|d MiAaPQ
|
050 |
|
4 |
|a S1-972
|
100 |
1 |
|
|a Rosenstock, Todd S.
|
245 |
1 |
0 |
|a Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture.
|
250 |
|
|
|a 1st ed.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing AG,
|c 2016.
|
264 |
|
4 |
|c ©2016.
|
300 |
|
|
|a 1 online resource (217 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Intro -- Foreword -- Preface -- Contents -- Contributors -- Chapter 1: Introduction to the SAMPLES Approach -- 1.1 Motivation for These Guidelines -- 1.2 Who Should Use These Guidelines? -- 1.3 How to Use These Guidelines -- References -- Chapter 2: Targeting Landscapes to Identify Mitigation Options in Smallholder Agriculture -- 2.1 Introduction -- 2.2 Initial Steps -- 2.3 Top-Down Approach -- 2.3.1 Landscape Stratification: An Example from East Africa -- Visual Classification Using VHR Imagery -- Land-Use and Land-Cover Classification Using Object-Based Approaches and VHR Imagery -- Landscape Classification Using RS Vegetation Productivity Parameters -- 2.4 Bottom-Up Approach -- 2.4.1 Field Typology Definition -- 2.5 Combining Top-Down and Bottom-Up: The Basis for Scaling Up -- 2.6 Conclusions -- 2.7 Appendix -- References -- Chapter 3: Determining Greenhouse Gas Emissions and Removals Associated with Land-Use and Land-Cover Change -- 3.1 Introduction -- 3.2 Determining Change in LULC -- 3.2.1 Setting Project Boundaries -- 3.2.2 Data Acquisition -- Existing Data -- Ground-Based Field Sampling Methods -- Remote Sensing Data -- Spatial Considerations -- Temporal Considerations -- 3.2.3 LULC Classification and Change Detection -- LULC Category Definition -- LULC Classification, Mapping, and Tabulation -- Stratification -- LULC Change Detection -- 3.3 Developing a Baseline -- 3.3.1 Baseline Scenarios -- 3.3.2 Reference Regions -- 3.4 Calculating Carbon Stock Changes -- 3.4.1 Key Carbon Pools -- 3.4.2 Initial Carbon Stock Estimates -- 3.4.3 Monitoring Carbon Stock Changes -- Process-Based Method -- Stock-Based Method -- 3.5 Assessing Accuracy and Calculating Uncertainty -- 3.5.1 LULC Classification Accuracy Assessment -- 3.5.2 LULC Change Detection Accuracy Assessment -- 3.5.3 Uncertainty Associated with Estimating Carbon Stocks.
|
505 |
8 |
|
|a 3.5.4 Combining Uncertainty Values and Reporting Total Uncertainty -- 3.6 Challenges, Limitations, and Emerging Technologies -- References -- Chapter 4: Quantifying Greenhouse Gas Emissions from Managed and Natural Soils -- 4.1 Introduction -- 4.2 What Technique Is Most Suitable for Measuring Biosphere-Atmosphere Exchange Processes of GHGs? -- 4.2.1 Micrometeorological Measurements -- 4.2.2 Chamber Measurements -- Chambers and Changes in Environmental Conditions -- Chambers and Spatial Variability of GHG Fluxes -- 4.3 Measurement of GHG Fluxes in Rice Paddies -- 4.3.1 Rice Chamber Design and General Procedure (See Also Table 4.2) -- 4.3.2 Time of Day of Sampling -- 4.3.3 Sampling Frequency -- 4.4 Analytical Instruments Used for Chamber Measurements -- 4.4.1 Gas Chromatography -- 4.4.2 Spectroscopic Methods -- 4.4.3 Auxiliary Measurements -- 4.5 Conclusions -- References -- Chapter 5: A Comparison of Methodologies for Measuring Methane Emissions from Ruminants -- 5.1 Introduction -- 5.2 Indirect Estimation -- 5.2.1 In Vitro Incubation -- 5.2.2 Estimation from Diet -- 5.3 Direct Measurement -- 5.3.1 Open-Circuit Respiration Chambers -- 5.3.2 Ventilated Hood System -- 5.3.3 Polytunnel -- 5.3.4 Sulfur Hexafluoride Tracer Technique -- 5.3.5 Open-Path Laser -- 5.4 Short-Term Measurement -- 5.4.1 Greenfeed® Emission Monitoring Apparatus -- 5.4.2 Portable Accumulation Chambers -- 5.4.3 Application of CH4:CO2 Ratio -- 5.4.4 Spot Sampling with Lasers -- 5.5 Emerging and Future Technologies -- 5.5.1 Blood Methane Concentration -- 5.5.2 Infrared Thermography -- 5.5.3 Intraruminal Telemetry -- 5.5.4 Quantitative Molecular Biology -- 5.6 Summary -- References -- Chapter 6: Quantifying Tree Biomass Carbon Stocks and Fluxes in Agricultural Landscapes -- 6.1 Introduction -- 6.2 Accuracy, Scale, and Cost.
|
505 |
8 |
|
|a 6.3 Quantification of Five Carbon Pools of Representative Plots -- 6.3.1 Selecting Plots -- 6.3.2 Measurements of Proxies for Tree Biomass -- 6.3.3 Calculating C Stocks and Fluxes -- Time-Averaged Carbon Stock for Different Land Uses -- Annual Changes: Growth Rates, Dendrochronology, Repeated Measurements -- 6.3.4 Scaling to Whole-Farms and Landscapes -- 6.4 Additional Sources of Information -- References -- Chapter 7: Methods for Smallholder Quantification of Soil Carbon Stocks and Stock Changes -- 7.1 Introduction -- 7.2 Quantification of Soil Carbon Stocks -- 7.2.1 Sampling Design: Stratification of the Project Area -- Farm Level -- Landscape Level -- 7.2.2 Sample Collection -- 7.2.3 Sample Preparation and Analytical Methods -- 7.2.4 Quantification of SOC Stocks -- 7.2.5 Scaling SOC Stocks to Landscape and Whole Farms -- 7.3 Quantification of Soil Carbon Stock Changes -- 7.3.1 Repeated measurements -- Laboratory-Based Analyses -- In Situ Analyses -- Remote Spectroscopy -- 7.3.2 Modeling -- Assumption of Stable Conditions -- Coupling Erosion Processes -- Existence of Contrasting SOM Dynamics Between Crops -- 7.3.3 Monitoring Frequency and Recommendations -- Appendix A: Methodology for Quantification of Soil Carbon Stocks and Carbon Stock Changes -- Number of Plots Required -- Appendix B: Simplified Protocol for Taking and Processing Soil Samples, Adapted for the SAMPLES Project -- Soil Sampling -- Detailed Sampling Procedure -- Soil Bulk Density Determinations -- Sample Processing -- References -- Chapter 8: Yield Estimation of Food and Non-food Crops in Smallholder Production Systems -- 8.1 Introduction -- 8.2 Crop Productivity Estimation -- 8.2.1 Crop Cuts -- 8.2.2 Farmers' Survey -- 8.2.3 Estimating Crop Yield by Using Grain Weight (Test Weight) -- 8.2.4 Whole Plot Harvest -- 8.2.5 Sampling for Harvest Unit -- 8.2.6 Expert Assessment.
|
505 |
8 |
|
|a 8.2.7 Crop Cards -- 8.2.8 Crop Modelling -- 8.2.9 Allometric Models -- 8.2.10 Remote Sensing -- 8.3 Critical Analysis and Comparison of Yield Estimation Methods with Regards to Cost, Scale, and Accuracy -- 8.4 Conclusion -- References -- Chapter 9: Scaling Point and Plot Measurements of Greenhouse Gas Fluxes, Balances, and Intensities to Whole Farms and Landscapes -- 9.1 Introduction? -- 9.2 Scaling Methods -- 9.3 Using Empirical and Process-Based Models with Disaggregated Data -- 9.3.1 Empirical Models -- 9.3.2 Process-Based Models -- Conclusion -- References -- Chapter 10: Methods for Environment: Productivity Trade-Off Analysis in Agricultural Systems -- 10.1 Introduction -- 10.2 The Nature of Trade-Off Analysis -- 10.3 Research Approaches and Tools -- 10.4 A Tiered Approach -- References -- Index.
|
588 |
|
|
|a Description based on publisher supplied metadata and other sources.
|
590 |
|
|
|a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Rufino, Mariana C.
|
700 |
1 |
|
|a Butterbach-Bahl, Klaus.
|
700 |
1 |
|
|a Wollenberg, Lini.
|
700 |
1 |
|
|a Richards, Meryl.
|
776 |
0 |
8 |
|i Print version:
|a Rosenstock, Todd S.
|t Methods for Measuring Greenhouse Gas Balances and Evaluating Mitigation Options in Smallholder Agriculture
|d Cham : Springer International Publishing AG,c2016
|z 9783319297927
|
797 |
2 |
|
|a ProQuest (Firm)
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=5577618
|z Click to View
|