Digital Interaction and Machine Intelligence : Proceedings of MIDI'2022 - 10th Machine Intelligence and Digital Interaction - Conference, December 12-15, 2022, Warsaw, Poland (Online).

Bibliographic Details
Main Author: Biele, Cezary.
Other Authors: Kacprzyk, Janusz., Kopeć, Wiesław., Owsiński, Jan W., Romanowski, Andrzej., Sikorski, Marcin.
Format: eBook
Language:English
Published: Cham : Springer, 2023.
Edition:1st ed.
Series:Lecture Notes in Networks and Systems Series
Subjects:
Online Access:Click to View
LEADER 11357nam a22005173i 4500
001 EBC30663093
003 MiAaPQ
005 20231204023231.0
006 m o d |
007 cr cnu||||||||
008 231204s2023 xx o ||||0 eng d
020 |a 9783031376498  |q (electronic bk.) 
020 |z 9783031376481 
035 |a (MiAaPQ)EBC30663093 
035 |a (Au-PeEL)EBL30663093 
035 |a (OCoLC)1392081578 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a Q342 
100 1 |a Biele, Cezary. 
245 1 0 |a Digital Interaction and Machine Intelligence :  |b Proceedings of MIDI'2022 - 10th Machine Intelligence and Digital Interaction - Conference, December 12-15, 2022, Warsaw, Poland (Online). 
250 |a 1st ed. 
264 1 |a Cham :  |b Springer,  |c 2023. 
264 4 |c ©2023. 
300 |a 1 online resource (327 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Lecture Notes in Networks and Systems Series ;  |v v.710 
505 0 |a Intro -- Foreword -- Contents -- Machine Intelligence -- Light Fixtures Position Detection Using a Camera -- 1 Introduction -- 1.1 Use Case -- 1.2 Programming Light Show -- 1.3 Light Network Control -- 2 State of the Art -- 3 Software -- 3.1 Programming Environment -- 3.2 Light Fixture Detection -- 3.3 GUI and User Input -- 4 Experiment -- 4.1 Lights Setup -- 4.2 Camera -- 5 Results -- 6 Discussion -- 7 Conclusion -- 8 Limitations -- 9 Future Research -- 10 Declarations -- References -- Improved Vehicle Logo Detection and Recognition for Complex Traffic Environments Using Deep Learning Based Unwarping of Extracted Logo Regions in Varying Angles -- 1 Introduction -- 2 Related Works -- 3 Working Methodology -- 3.1 Selected Models -- 3.2 Dataset -- 4 Results and Discussions -- 4.1 Test Cases -- 4.2 Comparative Analysis -- 4.3 Pose Variation Calculation -- 5 Conclusion and Future Work -- References -- Predicting Music Using Machine Learning -- 1 Introduction -- 2 Data -- 3 Feature Representation -- 3.1 Basic Music Notation -- 3.2 Note and Chord Representation -- 4 Methods and Modeling -- 4.1 Markov Chain Model -- 4.2 LSTM Model -- 4.3 LSTM Encoder-Decoder Model -- 4.4 Inference Modeling -- 4.5 Other Techniques -- 5 Results and Observations -- 6 Conclusion and Future Work -- References -- A Novel Process of Shoe Pairing Using Computer Vision and Deep Learning Methods -- 1 Introduction -- 2 Related Work -- 3 The Proposed Approach -- 3.1 Deep Multiview Representation Learning -- 3.2 Clustering -- 4 Results -- 5 Conclusions -- References -- Representation of Observations in Reinforcement Learning for Playing Arcade Fighting Game -- 1 Introduction -- 2 Environment Setup for KOF '97 -- 2.1 Interaction with Arched Emulator -- 2.2 Action Space -- 2.3 Observation -- 2.4 Graphical Representation of the Input and ACT Sequences -- 2.5 Reward System. 
505 8 |a 2.6 Proposed Network Structure -- 3 Experiment -- 3.1 Training Process -- 3.2 Results -- 3.3 Discussion -- 4 Conclusions -- References -- AI4U: Modular Framework for AI Application Design -- 1 Motivation -- 2 Related Work -- 3 Proposed Approach -- 4 The Application Area -- 4.1 Watchman Scenario -- 4.2 Parkmonitor Scenario -- 4.3 Tracker Scenario -- 4.4 Mapping the Environment Scenario -- 4.5 Vehicle Counting -- 4.6 Space Surveyer -- 4.7 Mission to Mars -- 4.8 First Conclusions -- 5 Conclusions and Further Work -- References -- A Competent Deep Learning Model to Detect COVID-19 Using Chest CT Images -- 1 Introduction -- 2 Literature Review -- 3 Our Proposed Methodology -- 3.1 Dataset Description and Preprocessing -- 3.2 Methodology -- 4 Results -- 5 Future Work and Conclusion -- References -- AI in Prostate MRI Analysis: A Short, Subjective Review of Potential, Status, Urgent Challenges, and Future Directions -- 1 Introduction -- 2 The Potential of Artificial Intelligence in MpMRI Analysis -- 2.1 Prostate Segmentation -- 2.2 Prostate Lesion Detection and Characterization -- 3 Urgent Challenges -- 3.1 Datasets -- 3.2 Defining Ground Truth -- 3.3 Different Evaluation Criteria -- 3.4 Limited Multireader Studies and Prospective Evaluation -- 4 Future Directions -- 5 Conclusions -- References -- Performance of Deep CNN and Radiologists in Prostate Cancer Classification: A Comparative Pilot Study -- 1 Introduction -- 2 Methods -- 2.1 Dataset -- 2.2 Radiological Assessment Study -- 2.3 Deep CNN Model -- 2.4 Probability Mapping -- 2.5 Statistical Analysis -- 3 Results -- 3.1 Results of Raw CNN Predictions -- 3.2 CNN Performance Compared to Human Raters -- 3.3 Diagnostic Accuracy of Combined Assessment -- 4 Discussion and Conclusion -- References -- Assessing GAN-Based Generative Modeling on Skin Lesions Images -- 1 Introduction -- 2 Materials and Methods. 
505 8 |a 2.1 International Skin Imaging Collaboration Database -- 2.2 Training Details -- 2.3 Evaluation Protocol -- 3 Results -- 3.1 GANs Trainings -- 3.2 Predictive Performance with Classifier -- 3.3 Explanations of the Predictions -- 4 Discussion -- 5 Conclusions -- References -- Prostate Cancer Detection Using a Transformer-Based Architecture and Radiomic-Based Postprocessing -- 1 Introduction -- 2 Material and Methods -- 2.1 Preprocessing -- 2.2 Deep Learning Architecture -- 2.3 Optimization -- 2.4 Hyperparameter Selection -- 2.5 Postprocessing -- 3 Results and Discussion -- 4 Conclusions -- References -- Sales Forecasting During the COVID-19 Pandemic for Stock Management -- 1 Introduction -- 2 Dataset -- 3 Methodology -- 3.1 Problem Identification -- 3.2 Data Preparation -- 3.3 Exploratory Data Analysis -- 3.4 Feature Extraction -- 3.5 Dataset Separation -- 3.6 Regression and Machine Learning Model -- 3.7 Performance Evaluation -- 4 Findings and Interpretation -- 5 Conclusion -- References -- Digital Interaction -- Seeking Emotion Labels for Bodily Reactions: An Experimental Study in Simulated Interviews -- 1 Introduction -- 1.1 Research Goal and Motivation -- 1.2 Hypotheses and Research Question -- 2 Theoretical Background -- 3 Methodology -- 3.1 Experiment Design -- 3.2 Procedure -- 3.3 Participants -- 3.4 Data Collection -- 3.5 Preprocessing Data -- 3.6 Analysis -- 4 Results -- 5 Discussion -- 6 Conclusion -- References -- "NAO Says": Designing and Evaluating Multimodal Playful Interactions with the Humanoid Robot NAO -- 1 Introduction -- 2 Design and Programming -- 2.1 Design -- 2.2 Programming -- 3 Methods and Studies -- 4 Results -- 4.1 Perceptions of the NAO Robot and the Game "NAO Says" -- 4.2 Perceived Level of Stress Before and After the Game -- 5 Conclusions -- References. 
505 8 |a Representation of Air Pollution in Augmented Reality: Tools for Population-Wide Behavioral Change -- 1 Introduction -- 1.1 Household Related Air Pollution -- 1.2 Air Pollution Representation -- 1.3 Augmented Reality -- 2 VAPE Augmented Reality App Design -- 2.1 Purpose of the AR Application -- 2.2 Accompanying Poster -- 2.3 Implementation of Air Pollution Visual Representation -- 2.4 Application Development and Implementation -- 3 Pretest Results -- 4 Conclusions -- References -- Ukrainian Version of the Copresence Scale -- 1 Introduction -- 2 Theoretical Context -- 2.1 War Migration from Ukraine in Poland -- 2.2 Copresence -- 2.3 Mediated Communication and War Migration -- 3 Method -- 3.1 Sample and Data Collection -- 3.2 Measures -- 3.3 Data Analysis -- 4 Results -- 4.1 Descriptive Statistics -- 4.2 Validation of the Ukrainian Perceived Copresence Scale (PCS-U) -- 5 Discussion -- References -- Modular Platform for Teaching Robotics -- 1 Motivation -- 2 Observations -- 3 Idea -- 4 Construction -- 5 Algorithm's Working Principles -- 6 Tests -- 7 Conclusions -- References -- A Method for Co-designing Immersive VR Environments with Users Excluded from the Main Technological Discourse -- 1 Introduction -- 2 Related Work -- 3 RAPID Approach Outline -- 3.1 I. Preliminary Phase: Team Formation -- 3.2 II. Main Phase: RAPID IERE Development -- 3.3 III. Closing Phase: XR Product Delivery and Testing -- 4 Discussion -- 4.1 Phase I: Team Formation -- 4.2 Phase II Development -- 4.3 Phase III Closing -- 4.4 Other Considerations -- 4.5 General Discussion -- 5 Conclusions -- References -- Improving the Usability of Requests for Consent to Use Cookies -- 1 Introduction -- 2 Privacy and Security Regulation -- 3 Dark Patterns in Cookies Consent Requests -- 4 Evaluation of Consent Requests in Lithuanian News Portals -- 5 Design Guidelines for Cookie Consent Requests. 
505 8 |a 6 Conclusions -- References -- Transdisciplinary Approach to Virtual Narratives - Towards Reliable Measurement Methods -- 1 Introduction: Motivation and Related Work -- 2 Overview of the Cinematic VR Research Method -- 2.1 The Research Application -- 2.2 Screening -- 2.3 Measures Used Before VR Experience -- 2.4 Baseline Measures -- 2.5 Cinematic VR Experience Test -- 2.6 Measures Applied After VR Experience -- 2.7 Digital Markers Calibration -- 3 Current Research - Method -- 3.1 Participants -- 3.2 Materials and Apparatus -- 3.3 Procedure -- 4 Results -- 4.1 User Experience - Experimental Setting and Equipment Evaluation -- 4.2 User State - Emotion, Arousal and Control -- 4.3 Presence -- 5 Discussion -- 6 Conclusions -- References -- Towards Gestural Interaction with 3D Industrial Measurement Data Using HMD AR -- 1 Introduction -- 2 Related Work -- 2.1 Gestural Interaction and Data Visualization in AR Systems -- 2.2 Augmented Reality in an Industrial Setting -- 3 Experimental Study Description -- 4 Results Overview -- 5 Discussion and Conclusions -- References -- Polish Adaptation of the Cybersickness Susceptibility Questionnaire (CSSQ-PL) -- 1 Introduction -- 1.1 Measuring Cybersickness -- 1.2 Predicting Cybersickness -- 2 Method -- 2.1 Participants and Apparatus -- 2.2 Measures -- 2.3 Stimuli and Procedure -- 2.4 Validation -- 3 Results -- 3.1 Language Adaptation -- 3.2 Reliability -- 3.3 Distributions -- 3.4 Validity -- 4 Discussion and Future Directions -- References -- Special Session: Advances in Collaborative Robotics -- NARX Recurrent Neural Network Model of the Graphene-Based Electronic Skin Sensors with Hysteretic Behaviour -- 1 Introduction -- 2 Graphene-Based Electronic Skin -- 3 Neural-Network Modelling -- 4 Results -- 4.1 Research Method -- 4.2 Modelling -- 4.3 Discussion -- 5 Summary -- References. 
505 8 |a Proximity Estimation for Electronic Skin Placed on Collaborative Robot Conductive Case. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
700 1 |a Kacprzyk, Janusz. 
700 1 |a Kopeć, Wiesław. 
700 1 |a Owsiński, Jan W. 
700 1 |a Romanowski, Andrzej. 
700 1 |a Sikorski, Marcin. 
776 0 8 |i Print version:  |a Biele, Cezary  |t Digital Interaction and Machine Intelligence  |d Cham : Springer,c2023  |z 9783031376481 
797 2 |a ProQuest (Firm) 
830 0 |a Lecture Notes in Networks and Systems Series 
856 4 0 |u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=30663093  |z Click to View