|
|
|
|
LEADER |
07507nam a22004333i 4500 |
001 |
EBC7245523 |
003 |
MiAaPQ |
005 |
20231204023229.0 |
006 |
m o d | |
007 |
cr cnu|||||||| |
008 |
231204s2010 xx o ||||0 eng d |
020 |
|
|
|a 9781000218923
|q (electronic bk.)
|
020 |
|
|
|z 9781439812006
|
035 |
|
|
|a (MiAaPQ)EBC7245523
|
035 |
|
|
|a (Au-PeEL)EBL7245523
|
035 |
|
|
|a (OCoLC)1378936199
|
040 |
|
|
|a MiAaPQ
|b eng
|e rda
|e pn
|c MiAaPQ
|d MiAaPQ
|
082 |
0 |
|
|a 616.85307547
|
100 |
1 |
|
|a Varsavsky, Andrea.
|
245 |
1 |
0 |
|a Epileptic Seizures and the EEG :
|b Measurement, Models, Detection and Prediction.
|
250 |
|
|
|a 1st ed.
|
264 |
|
1 |
|a Milton :
|b Taylor & Francis Group,
|c 2010.
|
264 |
|
4 |
|c ©2011.
|
300 |
|
|
|a 1 online resource (369 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Cover -- Half Title -- Title Page -- Copyright Page -- Table of Contents -- List of Figures -- Preface -- 1 Introduction -- 1.1 The Brain and Epilepsy -- 1.1.1 Micro-Scopic Dynamics: Single Neurons -- 1.1.2 Meso/Macro-Scopic Dynamics: Neural Networks -- 1.1.2.1 Cortico-Cortical Projections -- 1.1.2.2 Thalamo-Cortical Projections -- 1.1.3 Neurotransmitters and Neuromodulators -- 1.1.4 Epilepsy - A Malfunctioning Brain -- 1.1.4.1 Focal Epilepsy - Failure of Meso-Scopic Networks -- 1.1.4.2 Non-Focal Epilepsy -- 1.1.4.3 Continuous Epilepsy -- 1.1.5 Diagnosis and Treatment of Epilepsy -- 1.1.5.1 Anti-Epileptic Drugs -- 1.1.5.2 Surgical Resection -- 1.1.5.3 Electrical Stimulation -- 1.2 The EEG - A Recording of the Brain -- 1.2.1 The Normal EEG -- 1.2.2 The Epileptic EEG -- 1.2.3 Detecting Changes in the EEG -- 1.3 Dynamics of the Brain -- 1.3.1 Micro- and Macro-Scopic Models -- 1.3.2 Dynamic Models of Epilepsy -- 1.4 Stochasticity in Neural Systems -- 1.5 Conclusions and Further Reading -- 2 EEG Generation and Measurement -- 2.1 Principles of Bioelectric Phenomena -- 2.1.1 A Foreword on Notation -- 2.1.2 From Single Charges to Equivalent Dipoles -- 2.1.3 Equivalent Current Dipoles -- 2.1.4 Macro-Scopic Mean Fields - Homogeneous Media -- 2.1.5 Macro-Scopic Mean Fields - Inhomogeneous Media -- 2.2 Current Sources in Biological Tissue -- 2.2.1 Synaptic Structure and Current Dipoles -- 2.2.2 Spatial Integration -- 2.2.2.1 Cortical Structure -- 2.2.2.2 Cortical Folds -- 2.2.3 Temporal Integration -- 2.3 Volume Conducting Properties of the Head -- 2.3.1 Head Geometry -- 2.3.2 Capacitive Effects of Tissue -- 2.3.3 Estimating Conductivities -- 2.3.3.1 Brain -- 2.3.3.2 CSF -- 2.3.3.3 Skull -- 2.3.3.4 Scalp -- 2.4 The EEG: A Macro-Scopic View of the Brain -- 2.4.1 EEG Measurement -- 2.4.1.1 Cortical (Intra-Cranial) Recordings -- 2.4.1.2 Scalp Recordings.
|
505 |
8 |
|
|a 2.4.1.3 The Search for an Ideal Reference -- 2.4.1.4 Spatial Filtering Properties of the Skull -- 2.4.2 EEG Dynamics -- 2.4.3 Epilepsy and the EEG -- 2.5 Conclusions -- 2.A Units of Electric Quantities -- 2.B Volume Conductor Boundary Conditions -- 2.C Capacitance in RC Circuits -- 3 Signal Processing in EEG Analysis -- 3.1 Mathematical Representation of the EEG -- 3.2 Preprocessing -- 3.3 Feature Extraction -- 3.3.0.1 Computing Statistics: Averages vs. Instances -- 3.3.0.2 Noise -- 3.3.0.3 Stationarity and Windowing -- 3.3.0.4 Linearity, Non-Linearity, Determinism and Stochasticity -- 3.3.0.5 Normalization -- 3.3.1 Time Domain Analysis -- 3.3.1.1 Signal Amplitude (Energy) and Variance (Power) -- 3.3.1.2 Periodicity (Auto-Correlation) -- 3.3.1.3 Synchronization -- 3.3.2 Frequency Domain Analysis -- 3.3.3 Time-Frequency Analysis -- 3.3.4 Non-Linear Analysis -- 3.3.4.1 Embedding Theory -- 3.3.4.2 Dimension - How Complex is a System? -- 3.3.4.3 Lyapunov Exponents - How Predictable is a System? -- 3.3.4.4 Entropy - How Random is the System? -- 3.3.4.5 Non-Linear Dynamics and Analysis of the Epileptic EEG -- 3.4 Detection and Prediction of Seizures in Literature -- 3.5 Conclusions -- 4 Classifying the EEG -- 4.1 Types of Classifiers -- 4.1.1 Association Rules -- 4.1.2 Artificial Neural Networks -- 4.1.3 Support Vector Machines -- 4.2 Expert System -- 4.2.1 Processing Decisions -- 4.2.2 Spatio-Temporal Context -- 4.2.3 Patient Specificity -- 4.3 Conclusions -- 5 Seizure Detection -- 5.1 The Problem of Seizure Detection -- 5.1.1 The EEG Database -- 5.1.1.1 Group 1 - Scalp EEG Data (< -- 6 Seizures per Patient) -- 5.1.1.2 Group 2 - Scalp EEG Data (6 - 10 Seizures per Patient) -- 5.1.1.3 Group 3 - Scalp EEG Data, Non-Epileptic Patients -- 5.1.1.4 Group 4 - Intra-Cranial EEG Data -- 5.1.2 Performance Evaluation Metrics.
|
505 |
8 |
|
|a 5.2 Evaluation of Classification Methods -- 5.2.1 Feature Extraction -- 5.2.2 ANN Training and Testing -- 5.2.3 SVM Training and Testing -- 5.2.4 Results and Comparisons -- 5.3 Evaluation of Patient Un-Specific Seizure Detectors -- 5.3.1 Algorithm 1: Monitor -- 5.3.1.1 Algorithm Description -- 5.3.1.2 Results -- 5.3.2 Algorithm 2: CNet -- 5.3.2.1 Algorithm Description -- 5.3.2.2 Results -- 5.3.3 Algorithm 3: Reveal -- 5.3.3.1 Algorithm Description -- 5.3.3.2 Results -- 5.3.4 Algorithm 4: Saab -- 5.3.4.1 Algorithm Description -- 5.3.4.2 Results -- 5.3.5 Comparisons and Conclusions -- 5.4 Evaluation of Onset Seizure Detectors -- 5.4.1 Feature Extraction -- 5.4.1.1 Cross Correlation (XCORR) -- 5.4.1.2 Power Spectral Density (PSD) -- 5.4.1.3 Wavelet Analysis (WAV) -- 5.4.1.4 Correlation Dimension (CD) -- 5.4.2 Results and Comparisons -- 5.5 Conclusions -- 6 Modeling for Epilepsy -- 6.1 Physiological Parameters of Neural Models -- 6.1.1 Parameters in Single Neurons -- 6.1.2 Parameters in Networks of Neurons -- 6.2 Micro-Scopic (Statistical) Models -- 6.2.1 Model Summary -- 6.2.2 Validation and Limitations -- 6.3 Meso-Scopic (Phenomenological) Models -- 6.3.1 Model Summary -- 6.3.2 Analysis: Linearization, Stability and Instability -- 6.3.3 Validation and Limitations: Rhythms in the EEG -- 6.3.3.1 Simulating the Normal EEG -- 6.3.3.2 Simulating the Seizure EEG -- 6.3.3.3 Caution -- 6.3.4 Relationship to Micro-Scopic Models -- 6.4 Macro-Scopic Models (Future Outlook) -- 6.5 Practical Use of Models -- 6.5.1 Epileptic Seizure Generation -- 6.5.1.1 Seizure Initiation -- 6.5.1.2 Seizure Termination by Electrical Stimulation -- 6.5.2 Limitations of the EEG -- 6.6 Conclusions -- 6.A Physiological Parameters and Notation -- 6.B Summary of IF Model -- 6.C Summary of Phenomenological Model -- 7 On the Predictability of Seizures.
|
505 |
8 |
|
|a 7.1 Predictability - Terminology Made Clear -- 7.2 How to Estimate LRD -- 7.2.1 Example Distributions -- 7.2.2 Computing α -- 7.2.3 Simulations -- 7.2.4 Results -- 7.3 Seizure Frequency Dataset -- 7.4 Analysis - Estimation of α -- 7.5 Memory and Predictability of Seizures -- 7.6 Conclusions -- 8 Concluding Remarks -- Glossary -- Bibliography -- Index.
|
588 |
|
|
|a Description based on publisher supplied metadata and other sources.
|
590 |
|
|
|a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Mareels, Iven.
|
700 |
1 |
|
|a Cook, Mark.
|
776 |
0 |
8 |
|i Print version:
|a Varsavsky, Andrea
|t Epileptic Seizures and the EEG
|d Milton : Taylor & Francis Group,c2010
|z 9781439812006
|
797 |
2 |
|
|a ProQuest (Firm)
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=7245523
|z Click to View
|