Land Use Cover Datasets and Validation Tools : Validation Practices with QGIS.

Bibliographic Details
Main Author: García-Álvarez, David.
Other Authors: Camacho Olmedo, María Teresa., Paegelow, Martin., Mas, Jean-François.
Format: eBook
Language:English
Published: Cham : Springer International Publishing AG, 2022.
Edition:1st ed.
Subjects:
Online Access:Click to View
Table of Contents:
  • 509636_1_En_OFC
  • Contents
  • Editors and Contributors
  • 1 About This Book
  • Abstract
  • 1 Introduction
  • 2 What is the Main Aim of This Book?
  • 3 Who is the Book Aimed At?
  • 4 How to Use This Book?
  • 5 QGIS Exercises: Software, Study Areas and Data
  • 5.1 GIS Software
  • 5.2 QGIS Plugins
  • 5.3 Integrating R into QGIS
  • 5.4 Study Areas
  • 5.4.1 The Asturias Central Area (Spain)
  • 5.4.2 Ariège Valley (France)
  • 5.4.3 Marqués de Comillas (Mexico)
  • 5.5 Data
  • 6 Review of Land Use Cover Datasets
  • References
  • Concepts, Data and Validation
  • 2 Land Use Cover Mapping, Modelling and Validation. A Background
  • Abstract
  • 1 Introduction
  • 2 Land Use versus Land Cover
  • 3 Land Use and Land Cover Mapping: A History
  • 4 Uses of LUC Data
  • 5 Land Change Science
  • 6 Land Use and Land Cover Change Modelling
  • 7 Uncertainty and Validation
  • 8 Conclusions
  • References
  • 3 Validation of Land Use Cover Maps: A Guideline
  • Abstract
  • 1 Introduction
  • 2 Validation Methods/Functions and Exercises Presented in Part III of This Book
  • 3 Validation of Single Land Use Cover Maps
  • 4 Validation of Land Use Cover Maps Series/Land Use Cover Changes
  • 5 Validation of Land Use Cover Change Modelling Exercises
  • 5.1 Soft LUC Maps
  • 5.2 Hard LUC Maps
  • 5.2.1 Single LUC Maps
  • 5.2.2 LUC Maps Series/LUC Changes
  • References
  • 4 Land Use Cover Datasets: A Review
  • Abstract
  • 1 Introduction
  • 2 The Producers of LUC Data
  • 3 Land Use Cover Maps
  • 3.1 Platforms and Repositories
  • 3.2 General Land Use Cover Maps
  • 3.2.1 Global LUC Maps
  • The Production Methods
  • Accuracy
  • Spatial Resolution
  • Temporal Resolution
  • Classification Schemes
  • 3.2.2 Supra-national LUC Maps
  • Europe
  • Africa
  • The Americas
  • Asia and Antarctica
  • 3.3 Thematic Land Use Cover Datasets
  • 3.3.1 Global Thematic LUC Maps Focusing on Vegetation Covers.
  • 3.3.2 Global Thematic LUC Maps Focusing on Agricultural Covers
  • 3.3.3 Global Thematic LUC Maps Focusing on Artificial Covers
  • 3.3.4 Global Thematic LUC Maps Focusing on Water and Other Covers
  • 3.3.5 Supra-national Thematic LUC Maps
  • 4 Reference Land Use Cover Data
  • Further Reading
  • References
  • Data Access and Visualization
  • 5 Visualization and Communication of LUC Data
  • Abstract
  • 1 Introduction
  • 2 Geometric Signs
  • 2.1 Cartographic Projection and LUC Mapping
  • 2.2 The Minimum Mapping Unit in LUC Maps
  • 2.3 The Modifiable Areal Unit Problem (MAUP) and the Category Aggregation Problem (CAP)
  • 3 Visual Variables
  • 3.1 Shape
  • 3.2 Orientation
  • 3.3 Colour Hue
  • 3.4 Colour Value
  • 3.5 Texture
  • 3.6 Size
  • 3.7 Visual Variables and Geometric Dimension
  • 3.8 Visual Variables and Measurement Level
  • 4 Representing Nominal LUC Data
  • 5 Representing LUC Quantitative Data
  • 6 Representing Qualitative and Quantitative LUC Data
  • 7 Representing LUC Changes
  • 8 New Forms of Visualizing and Communicating LUC Data
  • 9 Conclusions
  • References
  • 6 Sample Data for Thematic Accuracy Assessment in QGIS
  • Abstract
  • 1 Sample Size Estimation and Spatial Distribution of Sampling Sites in a Stratified Randomised Design
  • 2 Collection of Reference Data for Assessing the Accuracy of a Thematic Map
  • References
  • Tools to Validate Land Use Cover Maps: A Review
  • 7 Basic and Multiple-Resolution Cross-Tabulation to Validate Land Use Cover Maps
  • Abstract
  • 1 Basic Cross-Tabulation
  • 2 Multiple-Resolution Cross-Tabulation
  • References
  • 8 Metrics Based on a Cross-Tabulation Matrix to Validate Land Use Cover Maps
  • Abstract
  • 1 Change Statistics
  • 2 Areal and Spatial Agreement Metrics
  • 3 Kappa Indices
  • 4 Agreement Between Maps at Overall and Stratum Level
  • 5 Accuracy Assessment Statistics
  • References.
  • 9 Pontius Jr. Methods Based on a Cross-Tabulation Matrix to Validate Land Use Cover Maps
  • Abstract
  • 1 Null Model
  • 2 LUCC Budget
  • 3 Quantity and Allocation Disagreement
  • 4 Figure of Merit (FoM) and Complementary Producer's and User's Accuracy
  • 5 Incidents and States
  • 6 Intensity Analysis
  • 7 Flow Matrix
  • References
  • 10 Validation of Soft Maps Produced by a Land Use Cover Change Model
  • Abstract
  • 1 Correlation
  • 2 Receiver Operating Characteristic (ROC)
  • 3 Difference in Potential (DiP)
  • 4 Total Uncertainty, Quantity Uncertainty, Allocation Uncertainty
  • References
  • 11 Spatial Metrics to Validate Land Use Cover Maps
  • Abstract
  • 1 Spatial Metrics
  • References
  • 12 Advanced Pattern Analysis to Validate Land Use Cover Maps
  • Abstract
  • 1 Map Curves
  • 2 Change on Pattern Borders
  • 3 Allocation Error Distance
  • References
  • 13 Geographically Weighted Methods to Validate Land Use Cover Maps
  • Abstract
  • 1 Overall, User's and Producer's Accuracy Through GWR
  • References
  • Land Use Cover Datasets: A Review
  • 14 Global General Land Use Cover Datasets with a Single Date
  • Abstract
  • 1 UMD LC Classification-University of Maryland Land Cover Classification
  • 2 GLCC 2.0 Global-Global Land Cover Characterization 2.0
  • 3 GLC2000-Global Land Cover 2000
  • 4 Geo-Wiki Hybrid
  • 5 LADA LUC Map-Land Degradation Assessment in Drylands
  • 6 GLC-SHARE-Global Land Cover-SHARE
  • 7 OSM Landuse/Landcover
  • References
  • 15 Global General Land Use Cover Datasets with a Time Series of Maps
  • Abstract
  • 1 GLASS-GLC-Global Land Surface Satellite-Global Land Cover
  • 2 LC-CCI-Land Cover-Climate Change Initiative
  • 3 GLC30-GlobeLand30
  • 4 GLC250-Global Land Cover 250 m
  • 5 MCD12Q1-MODIS/Terra + Aqua Land Cover Type
  • 6 GLCNMO-Global Land Cover by National Mapping Organization
  • 7 GlobCover.
  • 8 FROM-GLC-Finer Resolution Observation and Monitoring of Global Land Cover
  • 9 CGLS-LC100-Copernicus Global Land Service Dynamic Land Cover Map
  • References
  • 16 General Land Use Cover Datasets for Europe
  • Abstract
  • 1 HILDA
  • 2 CLC-CORINE Land Cover
  • 3 PELCOM-Pan-European Land Use and Land Cover Monitoring
  • 4 Annual Land Cover Product
  • 5 GlobCorine
  • 6 Urban Atlas
  • 7 N2K-Natura 2000
  • 8 Riparian Zones Land Cover/Land Use-Riparian Zones (RZ)
  • 9 Coastal Zones
  • 10 S2GLC 2017-Sentinel-2 Global Land Cover 2017
  • References
  • 17 General Land Use Cover Datasets for Africa
  • Abstract
  • 1 West Africa Land Use Land Cover
  • 2 SERVIR-ESA-SERVIR Eastern and Southern Africa
  • 3 SADC Land Cover Database
  • 4 AFRICOVER
  • 5 CCI LAND COVER - S2 PROTOTYPE
  • 6 Congo Basin Vegetation Types
  • References
  • 18 General Land Use Cover Datasets for America and Asia
  • Abstract
  • 1 LBA-ECO LC-08-Land Cover Map of South America
  • 2 NALCMS-North American Land Change Monitoring System
  • 3 MERISAM2009-MERIS MAP 2009/2010 South America
  • 4 The Himalaya Regional Land Cover Database
  • References
  • 19 Global Thematic Land Use Cover Datasets Characterizing Vegetation Covers
  • Abstract
  • 1 The World's Forests 2000
  • 2 FCover-Fraction of Green Vegetation Cover
  • 3 Hybrid Forest Mask 2000
  • 4 SYNMAP Global Potential Vegetation
  • 5 GFCC-Global Forest Cover Change (GFCC30TC and GFCC30FCC)
  • 6 Hansen Forest Map-Global Forest Change 2000-2019
  • 7 MODIS Vegetation Continuous Fields-MOD44B
  • 8 PTC Global Version-Percent Tree Cover Global Version
  • 9 FNF-Global Forest Non-Forest Map
  • 10 Forests of the World 2010
  • 11 TanDEM-X Forest/Non-Forest Map
  • References
  • 20 Global Thematic Land Use Cover Datasets Characterizing Agricultural Covers
  • Abstract
  • 1 Global Cropland Extent
  • 2 IIASA-IFPRI Cropland Map.
  • 3 GRIPC-Global Rainfed, Irrigated, and Paddy Croplands
  • 4 GFSAD1KCM and GFSAD1KCD
  • 5 Global Synergy Cropland Map
  • 6 UCL-Unified Cropland Layer
  • 7 GFSAD30 Cropland Extent
  • 8 ASAP Land Cover Masks
  • References
  • 21 Global Thematic Land Use Cover Datasets Characterizing Artificial Covers
  • Abstract
  • 1 Global Urban Land
  • 2 GHSL (Global Human Settlement Layer)-Built-up Area
  • 3 GAIA-Global Artificial Impervious Areas, GUB-Global Urban Boundaries
  • 4 Global Urban Expansion 1992-2016
  • 5 ISA-Global Inventory of the Spatial Distribution and Density of Constructed Impervious Surface Area
  • 6 HBASE and GMIS (Global High Resolution Urban Data from Landsat)
  • 7 GUF-Global Urban Footprint
  • 8 WSF-World Settlement Footprint
  • 9 GISM-Global Impervious Surface Map
  • References
  • 22 Supra-National Thematic Land Use Cover Datasets
  • Abstract
  • 1 Insular Southeast Asia-Forest Cover Map
  • 2 Continental Southeast Asia-Forest Cover Map
  • 3 Congo Basin Monitoring Maps
  • 4 MARS Crop Mask Over Africa
  • 5 HRL-High Resolution Layers
  • 6 ESM-European Settlement Map
  • References
  • 23 Correction to: About This Book
  • Correction to: Chapter "About This Book" in: D. García-Álvarez et al. (eds.), Land Use Cover Datasets and Validation Tools, https://doi.org/10.1007/978-3-030-90998-7_1.