|
|
|
|
LEADER |
05298nam a22004093i 4500 |
001 |
EBC6978014 |
003 |
MiAaPQ |
005 |
20231204023224.0 |
006 |
m o d | |
007 |
cr cnu|||||||| |
008 |
231204s2022 xx o ||||0 eng d |
020 |
|
|
|a 9783031051647
|q (electronic bk.)
|
020 |
|
|
|z 9783031051630
|
035 |
|
|
|a (MiAaPQ)EBC6978014
|
035 |
|
|
|a (Au-PeEL)EBL6978014
|
035 |
|
|
|a (OCoLC)1315573272
|
040 |
|
|
|a MiAaPQ
|b eng
|e rda
|e pn
|c MiAaPQ
|d MiAaPQ
|
050 |
|
4 |
|a QA71-90
|
100 |
1 |
|
|a McCabe, Kimberly J.
|
245 |
1 |
0 |
|a Computational Physiology :
|b Simula Summer School 2021 Student Reports.
|
250 |
|
|
|a 1st ed.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing AG,
|c 2022.
|
264 |
|
4 |
|c Ã2022.
|
300 |
|
|
|a 1 online resource (117 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Simula SpringerBriefs on Computing Series ;
|v v.12
|
505 |
0 |
|
|a Intro -- Preface -- Acknowledgements -- Contents -- Chapter 1 A Pipeline for Automated Coordinate Assignment in Anatomically Accurate Biventricular Models -- 1.1 Introduction -- 1.2 Methods -- 1.2.1 Semi-Automated Surface Extraction -- Algorithm 1 -- 1.2.2 Biventricular Coordinate System -- 1.2.2.1 Creation of the Coordinate System Cobiveco -- 1.2.3 Mapping Vector Fields -- 1.3 Results -- 1.4 Conclusion -- 1.4.1 Limitations -- References -- Chapter 2 3D Simulations of Fetal and Maternal Ventricular Excitation for Investigating the Abdominal ECG -- 2.1 Introduction -- 2.2 Methods -- 2.2.1 Geometrical mesh construction -- 2.2.2 Electrophysiological modelling -- 2.2.3 Extracellular potential measurements -- 2.2.4 Fetal ECG extraction using signal processing methods -- 2.3 Results -- 2.4 Discussion -- 2.5 Conclusions -- References -- Chapter 3 Ordinary Differential Equation-based Modeling of Cells in Human Cartilage -- 3.1 Introduction -- 3.2 Methods -- 3.2.1 Mathematical modelling of ATP-sensitive K+ currents -- 3.2.2 Population of Models -- 3.3 Results -- 3.3.1 Validation -- 3.3.2 Results for the ATP-sensitive K+ currents -- 3.3.3 Populations of Models -- 3.4 Discussion and Conclusion -- References -- Chapter 4 Conduction Velocity in Cardiac Tissue as Function of Ion Channel Conductance and Distribution -- 4.1 Introduction -- 4.2 Models and methods -- 4.2.1 The monodomain model -- 4.2.2 The EMI model -- 4.3 Results -- 4.4 Discussion -- 4.4.1 Influence of ion channel conductance on CV -- 4.4.2 Influence of ion channel distribution -- 4.5 Conclusions -- References -- Chapter 5 Computational Prediction of Cardiac Electropharmacology - How Much Does the Model Matter? -- 5.1 Introduction -- 5.2 Methods -- 5.2.1 Models of Cardiac Electrophysiology -- 5.2.2 Feature Extraction -- 5.2.3 Sensitivity Analysis and Translation -- 5.3 Results.
|
505 |
8 |
|
|a 5.3.1 Model Translation -- 5.3.2 Translation Discrepancies -- 5.4 Discussion -- 5.5 Conclusion -- References -- Chapter 6 A Computational Study of Flow Instabilities in Aneurysms -- 6.1 Introduction -- 6.2 Methods -- 6.2.1 Baseflow equations -- 6.2.2 Flow perturbations and instability -- 6.2.3 Discretization -- 6.2.4 Computational Methodology -- 6.3 Results -- 6.4 Discussion -- References -- Chapter 7 Investigating the Multiscale Impact of Deoxyadenosine Triphosphate (dATP) on Pulmonary Arterial Hypertension (PAH) Induced Heart Failure -- 7.1 Introduction -- 7.2 Methods -- 7.2.1 Cell Level Changes -- 7.2.1.1 The SERCA Pump and Calcium transients -- 7.2.1.2 Cross-bridge cycling kinetics -- 7.2.2 Organ Level Model -- 7.3 Results -- 7.4 Discussion and Conclusion -- 7.5 Acknowledgements -- 7.6 Supplementary Information -- References -- Chapter 8 Identifying Ionic Channel Block in a Virtual Cardiomyocyte Population Using Machine Learning Classifiers -- 8.1 Introduction -- 8.2 Methods -- 8.2.1 Data -- 8.2.2 Preprocessing -- 8.2.2.1 Noise -- 8.2.2.2 Normalizing -- 8.2.2.3 Subtract drug signals from control signals -- 8.2.2.4 Vt and Ca2+ concatenation -- 8.2.3 Multi-label classification methods -- 8.2.3.1 Binary relevance -- 8.2.3.2 Classifier chains -- 8.2.3.3 Label Powerset -- 8.2.4 Model architectures -- 8.2.4.1 Gaussian Naive Bayes -- 8.2.4.2 Support Vector Classifier -- 8.2.4.3 XGBoost -- 8.2.4.4 Feed Forward Neural Network -- 8.2.4.5 Convolutional Neural Network -- 8.2.4.6 Recurrent Neural Network -- 8.2.5 Model selection and hyperparameter tuning -- 8.2.6 Scoring and metrics -- 8.2.6.1 Accuracy -- 8.2.6.2 Recall and precision -- 8.2.7 Explainable AI -- 8.2.7.1 LIME (Local Interpretable Model-Agnostic Explanations) -- 8.3 Results -- 8.4 Discussion -- 8.5 Conclusion -- References.
|
588 |
|
|
|a Description based on publisher supplied metadata and other sources.
|
590 |
|
|
|a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
|
655 |
|
4 |
|a Electronic books.
|
776 |
0 |
8 |
|i Print version:
|a McCabe, Kimberly J.
|t Computational Physiology
|d Cham : Springer International Publishing AG,c2022
|z 9783031051630
|
797 |
2 |
|
|a ProQuest (Firm)
|
830 |
|
0 |
|a Simula SpringerBriefs on Computing Series
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=6978014
|z Click to View
|