Water-Filtered Infrared a (wIRA) Irradiation : From Research to Clinical Settings.

Bibliographic Details
Main Author: Vaupel, Peter.
Format: eBook
Language:English
Published: Cham : Springer International Publishing AG, 2022.
Edition:1st ed.
Subjects:
Online Access:Click to View
Table of Contents:
  • Intro
  • Foreword
  • Acknowledgments
  • Contents
  • Editor and Contributors
  • About the Editor
  • Contributors
  • Part I: Principles
  • 1: Glossary Used in wIRA-Hyperthermia
  • 1.1 Introduction
  • 1.2 Recommended Terms
  • 1.3 Occasionally Used, Obsolete, and Non-Recommended Terms
  • 1.4 Empirical and Basic Data for wIRA Skin Exposures in Radiation Oncology and in Physical Therapy [8, 10-13]
  • 1.4.1 Main Characteristics
  • 1.4.2 Heating-up Times Necessary to Reach Thermal Steady-State Temperatures During wIRA-Hyperthermia in Normal Tissues [13]
  • 1.4.3 Mean Steady-State Temperatures During wIRA-Hyperthermia in Normal Tissues and Human Cancers [11-13]
  • References
  • 2: From Sun to Therapeutic wIRA
  • 2.1 Introduction
  • 2.2 Generation of the Electromagnetic Radiation in the Sun
  • 2.2.1 The Extra-Terrestrial Solar Spectrum
  • 2.2.2 The Terrestrial Solar Spectrum
  • 2.3 The Generation of Absorption Lines and Bands (Water Bands) in the Terrestrial Spectrum, Interaction Between Water Molecules, and Electromagnetic Radiation (Photons)
  • 2.3.1 Structure of the Water Molecule and Hydrogen Bonding
  • 2.3.2 Vibrations of the Water Molecule
  • 2.3.2.1 Fundamental Vibrations
  • 2.3.2.2 Combination Vibrations
  • 2.3.2.3 Rotations
  • 2.4 Generating Therapeutic wIRA
  • 2.5 Comparison Between Therapeutic wIRA and the Terrestrial Solar Spectrum
  • 2.6 The wIRA Radiator
  • 2.6.1 Characteristics of Therapeutically Applied wIRA Irradiation
  • 2.6.1.1 Setting the Desired Irradiance
  • 2.6.1.2 Homogeneity of wIRA
  • 2.6.1.3 Combination of Two wIRA Radiators
  • 2.7 Conclusions
  • References
  • 3: Physical and Photobiological Basics of wIRA-Hyperthermia
  • 3.1 Introduction
  • 3.2 wIRA: Infrared Radiation That Fits into the Optical Window of Tissues
  • 3.3 Optical Effects of Interaction Between wIRA and Tissues.
  • 3.3.1 Spectral Transmittance and Remittance of wIRA (In vivo Data)
  • 3.3.2 Penetration of wIRA into Tissues
  • 3.4 Thermal Field Formation in Superficial Tissues During wIRA-Hyperthermia
  • 3.4.1 Individual Responses to wIRA-Skin Exposures
  • 3.4.2 Effects of Irradiance, Exposure Time, and Thermoregulation Upon Heating
  • 3.4.3 Effective Tissue Heating by Direct wIRA Absorption and Heat Conduction
  • 3.4.4 Vertical Temperature Profiles After Achieving Thermal Steady States
  • 3.4.5 Choice of Irradiance for Adequate wIRA-Hyperthermia in Oncology
  • 3.4.6 Post-Heating Temperature Decay Times to Ensure Effective Hyperthermia Levels During Subsequent Radiotherapy
  • 3.5 Conclusions
  • References
  • 4: Thermography and Thermometry in wIRA-Hyperthermia
  • 4.1 Introduction
  • 4.2 Physical Background of Contact-Free Temperature Measurements
  • 4.2.1 Basic Laws and Parameters
  • 4.2.2 Derivation of the Basic Equation for Temperature Measurement
  • 4.2.3 Determining the Emissivity of Human Skin
  • 4.2.3.1 Reference Temperature
  • 4.2.3.2 Reference Emissivity
  • 4.2.3.3 The Use of a Black Body to Measure Skin Temperature
  • 4.3 The Thermographic Camera (Syn.: Infrared Camera, Thermal Imaging Camera, Thermal Imager)
  • 4.3.1 Basic Mode of Operation
  • 4.3.2 Performance Criteria
  • 4.3.2.1 The Spectral Region
  • 4.3.2.2 Thermal Resolution, Relative and Absolute Accuracy
  • 4.3.2.3 Geometric Resolution (Syn.: Optical Resolution, Spatial Resolution)
  • 4.4 Pyrometer (IR Thermometer): Basic Mode of Operation
  • 4.5 Special Situations
  • 4.5.1 Curved Surfaces
  • 4.5.2 Optional Interventions During wIRA-HT
  • 4.6 Use of Thermographic Cameras for Temperature Measurements on Phantoms
  • 4.7 Relationship Between Temperatures Assessed at the Skin Surface and in Deeper Tissue Layers
  • 4.8 Conclusions
  • References.
  • 5: Temperature Profiles and Oxygenation Status in Human Skin and Subcutis Upon Thermography-Controlled wIRA-Hyperthermia
  • 5.1 Introduction
  • 5.2 Materials and Methods
  • 5.2.1 Delivery of wIRA-Hyperthermia
  • 5.2.2 Noninvasive Monitoring of Skin Surface Temperatures (Thermography)
  • 5.2.3 Minimally Invasive Measurement of Skin and Subcutis Temperatures (Thermometry)
  • 5.2.4 Assessment of the Tissue Oxygenation Status
  • 5.3 Results and Discussion
  • 5.3.1 Temperature Profiles
  • 5.3.2 Tissue Oxygenation
  • 5.3.2.1 Oxyhemoglobin Saturations Assessed by Hyperspectral Imaging
  • 5.3.2.2 Assessment of Tissue pO2 Values
  • 5.4 Summary and Outlook
  • References
  • Part II: Clinical Practice: Oncology
  • 6: Thermography-Controlled, Contact-Free wIRA-Hyperthermia Combined with Hypofractionated Radiotherapy for Large-Sized Lesions of Unresectable, Locally Recurrent Breast Cancer
  • 6.1 Introduction
  • 6.2 Patients and Treatments
  • 6.2.1 Basic Characteristics of the Patients
  • 6.2.2 Treatment Schedule
  • 6.3 Results
  • 6.3.1 Tumor Response and Toxicity
  • 6.3.2 Local Control and Re-Recurrence
  • 6.4 Conclusion and Outlook
  • References
  • 7: Combined Use of wIRA and Microwave or Radiofrequency Hyperthermia
  • 7.1 Introduction
  • 7.2 Available Equipment for Different Tumor Depths
  • 7.3 Temperature Control and Thermometry
  • 7.4 Treatment Schedules
  • 7.5 Clinical Application of wIRA Combined with Other Hyperthermia Devices
  • 7.6 Conclusions
  • References
  • 8: Whole-Body Hyperthermia in Oncology: Renaissance in the Immunotherapy Era?
  • 8.1 Introduction
  • 8.2 Techniques for Whole-Body Hyperthermia (WBH)
  • 8.3 Effects of Fever-Range WBH
  • 8.3.1 Effects on the Tumor Microenvironment (TME)
  • 8.3.2 Effects on the Immune System
  • 8.3.3 Psychoneurological Effects
  • 8.3.4 Other Effects Possibly Relevant in Oncology.
  • 8.4 Conclusions
  • References
  • 9: Gold Nanoparticles and Infrared Heating: Use of wIRA Irradiation
  • 9.1 Introduction
  • 9.1.1 Construct I
  • 9.1.2 Construct II
  • 9.1.3 Construct III
  • 9.2 Treatments and Results
  • 9.3 Conclusion
  • References
  • 10: Mild Hyperthermia Induced by Water-Filtered Infrared A Irradiation: A Potent Strategy to Foster Immune Recognition and Anti-Tumor Immune Responses in Superficial Cancers?
  • 10.1 Introduction
  • 10.2 Mild Hyperthermia Can Enhance the Delivery of Blood-Borne Anti-Tumor Immunity
  • 10.3 Mild Hyperthermia Can Attenuate Tumor Hypoxia, a Potent Suppressor of Anti-Tumor Immune Reactions
  • 10.4 Metabolic Reprogramming Impacts Anti-Tumor Immune Responses: Role of Mild Hyperthermia?
  • 10.5 Mild Hyperthermia Augments the Synthesis of Heat ­Shock Proteins (HSPs) and Increases Tumor Antigenicity
  • 10.5.1 Heat Shock Proteins (HSPs) in Normal and Tumor Cells
  • 10.5.2 Role of HSPs in NK and T-Cell-Mediated Immunity
  • 10.6 Conclusion
  • References
  • Part III: Clinical Practice: Psychiatry
  • 11: Whole-Body Hyperthermia (WBH): Historical Aspects, Current Use, and Future Perspectives
  • 11.1 History of Whole-Body Hyperthermia (WBH)
  • 11.2 Three Levels of Whole-Body Irradiation (WBH)
  • 11.3 Practical Implementation, Mechanisms of Action, Indications
  • 11.3.1 Mild WBH
  • 11.3.2 Fever-Range Whole-Body Hyperthermia (FRWBH)
  • 11.3.3 Extreme Whole-Body Hyperthermia (WBH)
  • 11.4 Contrary Effects of WBH on Blood Flow of Inner Organs and Body Periphery
  • 11.5 Currently Applied WBH Techniques
  • 11.6 Contraindications and Side Effects
  • 11.7 Conclusion and Outlook
  • References
  • 12: Whole-Body Hyperthermia (WBH) in Psychiatry
  • 12.1 Hyperthermia, Fever, and Mental Health
  • 12.2 Whole-Body Hyperthermia (WBH) for Psychiatric Symptoms
  • 12.3 Mechanisms of Action of WBH.
  • 12.4 Current Research
  • 12.4.1 Patients and Methods
  • 12.4.2 Preliminary Results and Clinical Experience
  • 12.5 Outlook to Future Research
  • References
  • Part IV: Clinical Practice: Neonatology
  • 13: Mode of Action, Efficacy, and Safety of Radiant Warmers in Neonatology
  • 13.1 Risk of Hypothermia in Term and Preterm Neonates
  • 13.1.1 Methods of Thermal Care in Neonatology
  • 13.1.2 Aim of the Studies Reported
  • 13.2 Materials and Methods
  • 13.2.1 Physical Investigations
  • 13.2.2 Clinical Observations
  • 13.3 Results and Discussion
  • 13.3.1 Physical Investigations
  • 13.3.2 Clinical Observations
  • 13.4 Current Practice and Unresolved Issues
  • 13.5 Summary and Conclusions
  • References
  • Part V: Clinical Practice: Dermatology
  • 14: Water-Filtered Infrared A Irradiation in Wound Treatment
  • 14.1 Introduction
  • 14.2 Historical Notes
  • 14.3 Basic Concepts and Mode of Action of wIRA
  • 14.4 Clinical Application Aspects
  • 14.5 wIRA for the Treatment of Acute and Chronic Wounds
  • 14.5.1 Acute Wounds
  • 14.5.1.1 Acute Abdominal Surgical Wounds
  • 14.5.1.2 Burn Wounds
  • 14.5.1.3 Experimental Wounds
  • 14.5.1.4 Other Aspects and Perspectives in Acute Wounds
  • 14.5.2 Chronic Wounds
  • 14.5.2.1 Chronic Venous Stasis Leg Ulcers
  • 14.5.2.2 Other Indications
  • 14.5.3 Variable Irradiations Used in Different Studies
  • 14.5.4 Conclusions and Perspectives
  • References
  • 15: Clinical Application of wIRA Irradiation in Burn Wounds
  • 15.1 Introduction
  • 15.2 Pathophysiology of Thermal Injuries
  • 15.2.1 First-Degree Burns
  • 15.2.2 Second-Degree Burns
  • 15.2.3 Third-Degree Burns
  • 15.3 wIRA Irradiation in Thermal Injuries
  • 15.3.1 Effects of wIRA Irradiation on the Skin
  • 15.3.2 wIRA Application in Thermal Wounds
  • 15.4 Outlook to Further Research
  • References.
  • 16: Influence of wIRA Irradiation on Wound Healing: Focus on the Dermis.