Modern Introduction To Particle Physics, A (3rd Edition).
Main Author: | |
---|---|
Other Authors: | |
Format: | eBook |
Language: | English |
Published: |
Singapore :
World Scientific Publishing Company,
2011.
|
Edition: | 1st ed. |
Subjects: | |
Online Access: | Click to View |
Table of Contents:
- Intro
- Contents
- Preface
- 1. Introduction
- 1.1 Fundamental Forces
- 1.1.1 The Gravitational Force
- 1.1.2 The Weak Nuclear Force
- 1.1.3 The Electromagnetic Force
- 1.1.4 The Strong Nuclear Force
- 1.2 Relative Strength of Four Fundamental Forces
- 1.3 Range of the Three Basic Forces
- 1.4 Classification of Matter
- 1.5 Strong Color Charges
- 1.6 Fundamental Role of "Charges" in the Unification of Forces
- 1.7 Strong Quark-Quark Force
- 1.8 Grand Unification
- 1.9 Units and Notation
- 1.10 Problems
- 1.11 References
- 2. Scattering and Particle Interaction
- 2.1 Introduction
- 2.2 Kinematics of a Scattering Process
- 2.3 Interaction Picture
- 2.4 Scattering Matrix (S-Matrix)
- 2.5 Phase Space
- 2.6 Examples
- 2.6.1 Two-body Scattering
- 2.6.2 Three-body Decay
- 2.6.2.1 Three-body Phase Space
- 2.7 Electromagnetic Interaction
- 2.8 Weak Interaction
- 2.9 Hadronic Cross-section
- 2.10 Problems
- 2.11 References
- 3. Space-Time Symmetries
- 3.1 Introduction
- 3.1.1 Rotation and SO(3) Group
- 3.1.2 Translation
- 3.1.3 Lorentz Group
- 3.2 Invariance Principle
- 3.2.1 U Continuous
- 3.2.2 U is Discrete (e.g. Space Reflection)
- 3.3 Parity
- 3.4 Intrinsic Parity
- 3.4.1 Intrinsic Parity of Pion
- 3.5 Parity Constraints on S-Matrix for Hadronic Reactions
- 3.5.1 Scattering of Spin 0 Particles on Spin 1/2 Particles
- 3.5.2 Decay of a Spin 0+ Particle into Three Spinless Particles Each Having Odd Parity
- 3.6 Time Reversal
- 3.6.1 Unitarity
- 3.6.2 Reciprocity Relation
- 3.7 Applications
- 3.7.1 Detailed Balance Principle
- 3.7.1.1 Determination of Spin of the Pion
- 3.8 Unitarity Constraints
- 3.8.1 Two-Particle Partial Wave Unitarity
- 3.9 Problems
- 4. Internal Symmetries
- 4.1 Selection Rules and Globally Conserved Quantum Numbers
- 4.2 Isospin.
- 4.2.1 Electromagnetic Interaction and Isospin
- 4.2.2 Weak Interaction and Isospin
- 4.3 Resonance Production
- 4.3.1 Δ-resonance
- 4.3.2 Spin of Δ
- 4.4 Charge Conjugation
- 4.5 G-Parity
- 4.6 Problems
- 4.7 References
- 5. Unitary Groups and SU(3)
- 5.1 Unitary Groups and SU(3)
- 5.2 Particle Representations in Flavor SU(3)
- 5.2.1 Mesons
- 5.2.2 Baryons
- 5.2.2.1 Baryon States
- 5.3 U-Spin
- 5.4 Irreducible Representations of SU(3)
- 5.4.1 Young's Tableaux
- 5.5 SU(N)
- 5.6 Applications of Flavor SU(3)
- 5.6.1 SU(3) Invariant BBP Couplings
- 5.6.2 VPP Coupling
- 5.7 Mass Splitting in Flavor SU(3)
- 5.8 Problems
- 5.9 References
- 6. SU(6) and Quark Model
- 6.1 SU(6)
- 6.1.1 SU(6) Wave Function for Mesons
- 6.2 Magnetic Moments of Baryons
- 6.3 Radiative Decays of Vector Mesons
- 6.4 Radiative Decays (Complementary Derivation)
- 6.4.1 Mesonic Radiative Decays V = P + γ
- 6.4.2 Baryonic Radiative Decay
- 6.5 Problems
- 6.6 References
- 7. Color, Gauge Principle and Quantum Chromodynamics
- 7.1 Evidence for Color
- 7.2 Gauge Principle
- 7.2.1 Aharanov and Bohm Experiment
- 7.2.2 Gauge Principle for Relativistic Quantum Mechanics
- 7.3 Non-Abelion Local Gauge Transformations (Yang-Mills)
- 7.4 Quantum Chromodynamics (QCD)
- 7.4.1 Conserved Current
- 7.4.2 Experimental Determinations of αs(q2) and Asymptotic Freedom of QCD
- 7.5 Hadron Spectroscopy
- 7.5.1 One Gluon Exchange Potential
- 7.5.2 Long Range QCD Motivated Potential
- 7.5.2.1 The string picture of hadrons
- 7.5.3 Spin-Spin Interaction
- 7.6 The Mass Spectrum
- 7.6.1 Meson Mass Relations
- 7.6.2 Baryon Mass Spectrum
- 7.7 Problems
- 7.8 References
- 8. Heavy Flavors
- 8.1 Discovery of Charm
- 8.1.1 Isospin
- 8.1.2 SU(3) Classification
- 8.2 Charm
- 8.2.1 Heavy Mesons
- 8.2.2 The Fifth Quark Flavor: Bottom Mesons.
- 8.2.3 The Sixth Quark Flavor: The Top
- 8.3 Strong and Radiative Decays of D* Mesons
- 8.4 Heavy Baryons
- 8.5 Quarkonium
- 8.6 Leptonic Decay Width of Quarkonium
- 8.7 Hadronic Decay Width
- 8.8 Non-Relativistic Treatment of Quarkonium
- 8.9 Observations
- 8.10 Tetraquark
- 8.11 Problems
- 8.12 References
- 9. Heavy Quark Effective Theory
- 9.1 Effective Lagrangian
- 9.2 Spin Symmetry of Heavy Quark
- 9.3 Mass Spectroscopy for Hadrons with One Heavy Quark
- 9.4 The P-wave Heavy Mesons: Mass Spectroscopy
- 9.5 Decays of P-wave Mesons
- 9.6 Problems
- 9.7 References
- 10. Weak Interaction
- 10.1 V − A Interaction
- 10.1.1 Helicity of the Neutrino
- 10.2 Classification of Weak Processes
- 10.2.1 Purely Leptonic Processes
- 10.2.2 Semileptonic Processes
- 10.2.3 Non-Leptonic Processes
- 10.2.4 μ-Decay
- 10.2.5 Remarks
- 10.2.5.1 Decay of polarized muon
- 10.2.6 Semi-Leptonic Processes
- 10.3 Baryon Decays
- 10.4 Pseudoscalar Meson Decays
- 10.4.1 Pion Decay
- 10.4.1.1 Remarks
- 10.4.2 Strangeness Changing Semi-Leptonic Decays
- 10.5 Hadronic Weak Decays
- 10.5.1 Non-Leptonic Decays of Hyperons
- 10.5.2 ΔI = 1/2 Rule for Hyperon Decays
- 10.5.3 Non-leptonic Hyperon Decays in Non-Relativistic Quark Model
- 10.6 Problems
- 10.7 References
- 11. Properties of Weak Hadronic Currents and Chiral Symmetry
- 11.1 Introduction
- 11.2 Conserved Vector Current Hypothesis (CVC)
- 11.3 Partially Conserved Axial Vector Current Hypothesis (PCAC)
- 11.4 Current Algebra and Chiral Symmetry
- 11.4.1 Explicit Breaking of Chiral Symmetry
- 11.4.2 An Application of Chiral Symmetry to Non-Leptonic Decays of Hyperons
- 11.5 Axial Anomaly
- 11.6 QCD Sum Rules
- 11.7 Problems
- 11.8 References
- 12. Neutrino
- 12.1 Introduction
- 12.2 Intrinsic Properties of Neutrinos
- 12.3 Mass
- 12.3.1 Constraints on Neutrino Mass.
- 12.3.1.1 Direct Limits
- 12.3.1.2 Double β-Decay
- 12.3.1.3 Cosmology
- 12.3.1.4 Astrophysical Constraints
- 12.3.2 Dirac and Majorana Masses
- 12.3.3 Fermion Masses in the Standard Model (SM) and See-saw Mechanism
- 12.4 Neutrino Oscillations
- 12.4.1 Mikheyev-Smirnov-Wolfenstein Effect
- 12.4.2 Evolution of Flavor Eigenstates in Matter
- 12.5 Evidence for Neutrino Oscillations
- 12.5.1 Disappearance Experiments
- 12.5.2 Appearance Experiments
- 12.5.2.1 Atmospheric neutrino anomaly
- 12.5.2.2 Solar neutrinos
- 12.6 Neutrino Mass Models and Mixing Matrix and Symmetries
- 12.7 Neutrino Magnetic Moment
- 12.8 Problems
- 12.9 References
- 13. Electroweak Unification
- 13.1 Introduction
- 13.2 Spontaneous Symmetry Breaking and Higgs Mechanism
- 13.2.1 Higgs Mechanism
- 13.2.2 Gauge Symmetry Breaking for Chiral U1 U2 Group
- 13.3 Renormalizability
- 13.4 Electroweak Unification
- 13.4.1 Experimental Consequences of the Electroweak Unification
- 13.4.2 Need for Radiative Corrections
- 13.4.3 Experiments which Determine sin2θW
- 13.5 Decay Widths of W and Z Bosons
- 13.6 Tests of Yang-Mills Character of Gauge Bosons
- 13.7 Higgs Boson Mass
- 13.8 Upper Bound
- 13.8.1 Unitarity
- 13.8.2 Finiteness of Couplings
- 13.9 Standard Model, Higgs Boson Searches, Production at Decays
- 13.9.1 LEP-2
- 13.9.2 LHC and Tevatron
- 13.10 Two Higgs Doublet Model (2HDM)
- 13.11 GIM Mechanism
- 13.12 Cabibbo-Kobayashi-Maskawa Matrix
- 13.13 Axial Anomaly
- 13.14 Problems
- 13.15 References
- 14. Deep Inelastic Scattering
- 14.1 Introduction
- 14.2 Deep-Inelastic Lepton-Nucleon Scattering
- 14.3 Parton Model
- 14.4 Deep Inelastic Neutrino-Nucleon Scattering
- 14.5 Sum Rules
- 14.6 Deep-Inelastic Scattering Involving Neutral Weak Currents
- 14.7 Problems
- 14.8 References
- 15. Weak Decays of Heavy Flavors.
- 15.1 Leptonic Decays of τ Lepton
- 15.2 Semi-Hadronic Decays of τ Lepton
- 15.2.1 Special Cases
- 15.3 Weak Decays of Heavy Flavors
- 15.3.1 Leptonic Decays of D and B Mesons
- 15.3.2 Semileptonic Decays of D and B Mesons
- 15.3.3 (Exclusive) Semileptonic Decays of D and B Mesons
- 15.3.4 Weak Hadronic Decays of B Mesons
- 15.3.5 Inclusive Hadronic B Decays
- 15.3.6 Radiative Decays of Bq Mesons
- 15.4 Inclusive Hadronic Decays of D-Mesons
- 15.4.1 Scattering and Annihilation Diagrams
- 15.5 Problems
- 15.6 References
- 16. Particle Mixing and CP-Violation
- 16.1 Introduction
- 16.2 CPT and CP Invariance
- 16.3 CP-Violation in the Standard Model
- 16.4 Particle Mixing
- 16.5 K0 − K0 Complex and CP-Violation in K-Decay
- 16.6 B0 − B0 Complex
- 16.7 CP-Violation in B-Decays
- 16.8 CP-Violation in Hadronic Weak Decays of Baryons
- 16.9 Problems
- 16.10 References
- 17. Grand Unification, Supersymmetry and Strings
- 17.1 Grand Unification
- 17.1.1 q2 Evolution of Gauge Coupling Constants and the Grand Unification Mass Scale
- 17.1.2 General Consequences of GUTS
- 17.2 Poincaré Group and Supersymmetry
- 17.2.1 Introduction
- 17.2.2 Poincaré Group
- 17.2.3 Two-Component Weyl Spinors
- 17.2.4 Spinor Algebra, Supersymmetry
- 17.2.5 Supersymmetric Multiplets
- 17.3 Supersymmetry and Strings
- 17.3.1 Introduction
- 17.3.2 Supersymmetry
- 17.3.2.1 Supersymmetric Yang-Mills: An Example
- 17.4 String Theory and Duality
- 17.4.1 M-theory
- 17.6 Conclusions
- 17.7 Problems
- 17.8 References
- 18. Cosmology and Astroparticle Physics
- 18.1 Cosmological Principle and Expansion of the Universe
- 18.2 The Standard Model of Cosmology
- 18.3 Cosmological Parameters and the Standard Model Solutions
- 18.4 Accelerating Universe and Dark Energy
- 18.4.1 Evidence from Supernovae
- 18.4.2 Evidence from CMB Data.
- 18.4.3 Quintessence.