Multimedia Forensics.

Bibliographic Details
Main Author: Sencar, Husrev Taha.
Other Authors: Verdoliva, Luisa., Memon, Nasir.
Format: eBook
Language:English
Published: Singapore : Springer, 2022.
Edition:1st ed.
Series:Advances in Computer Vision and Pattern Recognition Series
Subjects:
Online Access:Click to View
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Symbols
  • Notation
  • Part I Present and Challenges
  • 1 What's in This Book and Why?
  • 1.1 Introduction
  • 1.2 Overviews
  • 2 Media Forensics in the Age of Disinformation
  • 2.1 Media and the Human Experience
  • 2.2 The Threat to Democracy
  • 2.3 New Technologies, New Threats
  • 2.3.1 End-to-End Trainable Speech Synthesis
  • 2.3.2 GAN-Based Codecs for Still and Moving Pictures
  • 2.3.3 Improvements in Image Manipulation
  • 2.3.4 Trillion-Param Models
  • 2.3.5 Lottery Tickets and Compression in Generative Models
  • 2.4 New Developments in the Private Sector
  • 2.4.1 Image and Video
  • 2.4.2 Language Models
  • 2.5 Threats in the Wild
  • 2.5.1 User-Generated Manipulations
  • 2.5.2 Corporate Manipulation Services
  • 2.5.3 Nation State Manipulation Examples
  • 2.5.4 Use of AI Techniques for Deception 2019-2020
  • 2.6 Threat Models
  • 2.6.1 Carnegie Mellon BEND Framework
  • 2.6.2 The ABC Framework
  • 2.6.3 The AMITT Framework
  • 2.6.4 The SCOTCH Framework
  • 2.6.5 Deception Model Effects
  • 2.6.6 4Ds
  • 2.6.7 Advanced Persistent Manipulators
  • 2.6.8 Scenarios for Financial Harm
  • 2.7 Investments in Countering False Media
  • 2.7.1 DARPA SEMAFOR
  • 2.7.2 The Partnership on AI Steering Committee on Media Integrity Working Group
  • 2.7.3 JPEG Committee
  • 2.7.4 Content Authenticity Initiative (CAI)
  • 2.7.5 Media Review
  • 2.8 Excerpts on Susceptibility and Resilience to Media Manipulation
  • 2.8.1 Susceptibility and Resilience
  • 2.8.2 Case Studies: Threats and Actors
  • 2.8.3 Dynamics of Exploitative Activities
  • 2.8.4 Meta-Review
  • 2.9 Conclusion
  • References
  • 3 Computational Imaging
  • 3.1 Introduction to Computational Imaging
  • 3.2 Automation of Geometrically Correct Synthetic Blur
  • 3.2.1 Primary Cue: Image Noise
  • 3.2.2 Additional Photo Forensic Cues
  • 3.2.3 Focus Manipulation Detection.
  • 3.2.4 Portrait Mode Detection Experiments
  • 3.2.5 Conclusions on Detecting Geometrically Correct Synthetic Blur
  • 3.3 Differences Between Optical and Digital Blur
  • 3.3.1 Authentically Blurred Edges
  • 3.3.2 Authentic Sharp Edge
  • 3.3.3 Forged Blurred Edge
  • 3.3.4 Forged Sharp Edge
  • 3.3.5 Distinguishing IGHs of the Edge Types
  • 3.3.6 Classifying IGHs
  • 3.3.7 Splicing Logo Dataset
  • 3.3.8 Experiments Differentiating Optical and Digital Blur
  • 3.3.9 Conclusions: Differentiating Optical and Digital Blur
  • 3.4 Additional Forensic Challenges from Computational Cameras
  • References
  • Part II Attribution
  • 4 Sensor Fingerprints: Camera Identification and Beyond
  • 4.1 Introduction
  • 4.2 Sensor Noise Fingerprints
  • 4.3 Camera Identification
  • 4.4 Sensor Misalignment
  • 4.5 Image Manipulation Localization
  • 4.6 Counter-Forensics
  • 4.7 Camera Fingerprints and Deep Learning
  • 4.8 Public Datasets
  • 4.9 Concluding Remarks
  • References
  • 5 Source Camera Attribution from Videos
  • 5.1 Introduction
  • 5.2 Challenges in Attributing Videos
  • 5.3 Attribution of Downsized Media
  • 5.3.1 The Effect of In-Camera Downsizing on PRNU
  • 5.3.2 Media with Mismatching Resolutions
  • 5.4 Mitigation of Video Coding Artifacts
  • 5.4.1 Video Coding from Attribution Perspective
  • 5.4.2 Compensation of Loop Filtering
  • 5.4.3 Coping with Quantization-Related Weakening of PRNU
  • 5.5 Tackling Digital Stabilization
  • 5.5.1 Inverting Frame Level Stabilization Transformations
  • 5.5.2 Inverting Spatially Variant Stabilization Transformations
  • 5.6 Datasets
  • 5.7 Conclusions and Outlook
  • References
  • 6 Camera Identification at Large Scale
  • 6.1 Introduction
  • 6.2 Naive Methods
  • 6.2.1 Linear Search
  • 6.2.2 Sequential Trimming
  • 6.3 Efficient Pairwise Correlation
  • 6.3.1 Search over Fingerprint Digests
  • 6.3.2 Pixel Quantization
  • 6.3.3 Downsizing.
  • 6.3.4 Dimension Reduction Using PCA and LDA
  • 6.3.5 PRNU Compression via Random Projection
  • 6.3.6 Preprocessing, Quantization, Coding
  • 6.4 Decreasing the Number of Comparisons
  • 6.4.1 Clustering by Cameras
  • 6.4.2 Composite Fingerprints
  • 6.5 Hybrid Methods
  • 6.5.1 Search over Composite-Digest Search Tree
  • 6.5.2 Search over Full Digest Search Tree
  • 6.6 Conclusion
  • References
  • 7 Source Camera Model Identification
  • 7.1 Introduction
  • 7.1.1 Image Acquisition Pipeline
  • 7.1.2 Problem Formulation
  • 7.2 Model-Based Approaches
  • 7.2.1 Color Filter Array (CFA)
  • 7.2.2 Lens Effects
  • 7.2.3 Other Processing and Defects
  • 7.3 Data-Driven Approaches
  • 7.3.1 Hand-Crafted Features
  • 7.3.2 Learned Features
  • 7.4 Datasets and Benchmarks
  • 7.4.1 Template Dataset
  • 7.4.2 State-of-the-art Datasets
  • 7.4.3 Benchmark Protocol
  • 7.5 Case Studies
  • 7.5.1 Experimental Setup
  • 7.5.2 Comparison of Closed-Set Methods
  • 7.5.3 Comparison of Open-Set Methods
  • 7.6 Conclusions and Outlook
  • References
  • 8 GAN Fingerprints in Face Image Synthesis
  • 8.1 Introduction
  • 8.2 Related Work
  • 8.2.1 Generative Adversarial Networks
  • 8.2.2 GAN Detection Techniques
  • 8.3 GAN Fingerprint Removal: GANprintR
  • 8.4 Databases
  • 8.4.1 Real Face Images
  • 8.4.2 Synthetic Face Images
  • 8.5 Experimental Setup
  • 8.5.1 Pre-processing
  • 8.5.2 Facial Manipulation Detection Systems
  • 8.5.3 Protocol
  • 8.6 Experimental Results
  • 8.6.1 Controlled Scenarios
  • 8.6.2 In-the-Wild Scenarios
  • 8.6.3 GAN-Fingerprint Removal
  • 8.6.4 Impact of GANprintR on Other Fake Detectors
  • 8.7 Conclusions and Outlook
  • References
  • Part III Integrity and Authenticity
  • 9 Physical Integrity
  • 9.1 Introduction
  • 9.1.1 Journalistic Fact Checking
  • 9.1.2 Physics-Based Methods in Multimedia Forensics
  • 9.1.3 Outline of This Chapter.
  • 9.2 Physics-Based Models for Forensic Analysis
  • 9.2.1 Geometry and Optics
  • 9.2.2 Photometry and Reflectance
  • 9.3 Algorithms for Physics-Based Forensic Analysis
  • 9.3.1 Principal Points and Homographies
  • 9.3.2 Photometric Methods
  • 9.3.3 Point Light Sources and Line Constraints in the Projective Space
  • 9.4 Discussion and Outlook
  • 9.5 Picture Credits
  • References
  • 10 Power Signature for Multimedia Forensics
  • 10.1 Electric Network Frequency (ENF): An Environmental Signature for Multimedia Recordings
  • 10.2 Technical Foundations of ENF-Based Forensics
  • 10.2.1 Reference Signal Acquisition
  • 10.2.2 ENF Signal Estimation
  • 10.2.3 Higher Order Harmonics for ENF Estimation
  • 10.3 ENF Characteristics and Embedding Conditions
  • 10.3.1 Establishing Presence of ENF Traces
  • 10.3.2 Modeling ENF Behavior
  • 10.4 ENF Traces in the Visual Track
  • 10.4.1 Mechanism of ENF Embedding in Videos and Images
  • 10.4.2 ENF Extraction from the Visual Track
  • 10.4.3 ENF Extraction from a Single Image
  • 10.5 Key Applications in Forensics and Security
  • 10.5.1 Joint Time-Location Authentication
  • 10.5.2 Integrity Authentication
  • 10.5.3 ENF-Based Localization
  • 10.5.4 ENF-Based Camera Forensics
  • 10.6 Anti-Forensics and Countermeasures
  • 10.6.1 Anti-Forensics and Detection of Anti-Forensics
  • 10.6.2 Game-Theoretic Analysis on ENF-Based Forensics
  • 10.7 Applications Beyond Forensics and Security
  • 10.7.1 Multimedia Synchronization
  • 10.7.2 Time-Stamping Historical Recordings
  • 10.7.3 Audio Restoration
  • 10.8 Conclusions and Outlook
  • References
  • 11 Data-Driven Digital Integrity Verification
  • 11.1 Introduction
  • 11.2 Forensics Clues
  • 11.2.1 Camera-Based Artifacts
  • 11.2.2 JPEG Artifacts
  • 11.2.3 Editing Artifacts
  • 11.3 Localization Versus Detection
  • 11.3.1 Patch-Based Localization
  • 11.3.2 Image-Based Localization.
  • 11.3.3 Detection
  • 11.4 Architectural Solutions
  • 11.4.1 Constrained Networks
  • 11.4.2 Two-Branch Networks
  • 11.4.3 Fully Convolutional Networks
  • 11.4.4 Siamese Networks
  • 11.5 Datasets
  • 11.6 Major Challenges
  • 11.7 Conclusions and Future Directions
  • References
  • 12 DeepFake Detection
  • 12.1 Introduction
  • 12.2 DeepFake Video Generation
  • 12.3 Current DeepFake Detection Methods
  • 12.3.1 General Principles
  • 12.3.2 Categorization Based on Methodology
  • 12.3.3 Categorization Based on Input Types
  • 12.3.4 Categorization Based on Output Types
  • 12.3.5 The DeepFake-o-Meter Platform
  • 12.3.6 Datasets
  • 12.3.7 Challenges
  • 12.4 Future Directions
  • 12.5 Conclusion and Outlook
  • References
  • 13 Video Frame Deletion and Duplication
  • 13.1 Introduction
  • 13.2 Related Work
  • 13.2.1 Frame Deletion Detection
  • 13.2.2 Frame Duplication Detection
  • 13.3 Frame Deletion Detection
  • 13.3.1 Baseline Approaches
  • 13.3.2 C3D Network for Frame Deletion Detection
  • 13.3.3 Experimental Result
  • 13.4 Frame Duplication Detection
  • 13.4.1 Coarse-Level Search for Duplicated Frame Sequences
  • 13.4.2 Fine-Level Search for Duplicated Frames
  • 13.4.3 Inconsistency Detector for Duplication Localization
  • 13.4.4 Experimental Results
  • 13.5 Conclusions and Discussion
  • References
  • 14 Integrity Verification Through File Container Analysis
  • 14.1 Introduction
  • 14.1.1 Main Image File Format Specifications
  • 14.1.2 Main Video File Format Specifications
  • 14.2 Analysis of Image File Formats
  • 14.2.1 Analysis of JPEG Tables and Image Resolution
  • 14.2.2 Analysis of Exif Metadata Parameters
  • 14.2.3 Analysis of the JPEG File Format
  • 14.2.4 Automatic Analysis of JPEG Header Information
  • 14.2.5 Methods for the Identification of Social Networks
  • 14.3 Analysis of Video File Formats
  • 14.3.1 Analysis of the Video File Structure.
  • 14.3.2 Automated Analysis of mp4-like Videos.