Inquiry in University Mathematics Teaching and Learning : The Platinum Project.

Bibliographic Details
Main Author: Jaworski, Barbara.
Other Authors: Rebenda, Josef., Hochmuth, Reinhard., Thomas, Stephanie., Artigue, Michèle., Gómez-Chacón, Inés., Khellaf, Sarah., Peters, Jana., Ruge, Johanna., Másilko, Lukáš.
Format: eBook
Language:English
Published: Brno : Masaryk University, 2021.
Edition:1st ed.
Subjects:
Online Access:Click to View
LEADER 08509nam a22005053i 4500
001 EBC6913633
003 MiAaPQ
005 20231204023222.0
006 m o d |
007 cr cnu||||||||
008 231204s2021 xx o ||||0 eng d
020 |a 9788021099838  |q (electronic bk.) 
020 |z 9788021099821 
035 |a (MiAaPQ)EBC6913633 
035 |a (Au-PeEL)EBL6913633 
035 |a (OCoLC)1305846703 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
100 1 |a Jaworski, Barbara. 
245 1 0 |a Inquiry in University Mathematics Teaching and Learning :  |b The Platinum Project. 
250 |a 1st ed. 
264 1 |a Brno :  |b Masaryk University,  |c 2021. 
264 4 |c ©2021. 
300 |a 1 online resource (373 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Intro -- Authors -- Foreword -- Chapter 1. Introduction -- References -- Part 1. Inquiry Communities in Mathematics Teaching and Learning -- Chapter 2. Conceptual Foundations of the PLATINUM Project -- 2.1. The PLATINUM Project -- 2.2. A Need to Redefine Teaching -- 2.3. IBME: A Brief History in the PLATINUM Countries and Beyond -- 2.4. IBME in Mathematics Education -- 2.5. IBME in the PLATINUM Project -- 2.6. Discussion and Conclusions -- References -- Chapter 3. Spidercharts: A Tool for Describing and Reflecting IBME Activities -- 3.1. Introduction -- 3.2. Developing the Spidercharts -- 3.3. The Three Spidercharts and How to Work With Them -- 3.4. The Spidercharts of the PLATINUM Cases -- 3.5. Discussion -- References -- Chapter 4. Students With Identified Needs and IBME -- 4.1. Introduction -- 4.2. Diversity of Students' Characteristics and Needs -- 4.3. PLATINUM Partners' Perspectives -- 4.4. Typology of Students With Identified Needs -- 4.5. Inquiry-Based Instruction and Students With Identified Needs -- 4.6. Universal Design of Inquiry-Based Mathematical Education -- 4.7. Conclusion and Discussion -- References -- Part 2. PLATINUM: The Project -- Chapter 5. Origins and Implementation of the Project -- 5.1. Introduction -- 5.2. Formation of the Consortium -- 5.3. Choosing the Project's Format and Focus -- 5.4. PLATINUM Intellectual Outputs and Project Management -- 5.5. PLATINUM Community Meetings and Lessons Learned -- 5.6. Reflection About Collaboration Between Mathematicians and Mathematics Educators -- References -- Chapter 6. Creating Teaching Units for Student Inquiry -- 6.1. Introduction -- 6.2. Frameworks Used in PLATINUM for Designing Student Inquiry -- 6.3. Documentation of Inquiry Tasks in PLATINUM -- 6.4. Examples of Inquiry Tasks Developed and Used in PLATINUM -- 6.5. Use of ICT in Student Inquiry. 
505 8 |a 6.6. Guiding Design Principles Identified in PLATINUM -- 6.7. Accessibility of Teaching Units for Students With Identified Needs -- 6.8. Concluding Remarks -- References -- Chapter 7. Methods and Materials for Professional Development of Lecturers -- 7.1. Introduction -- 7.2. Professional Development in IBME -- 7.3. IBME Workshops -- 7.4. Summary and Looking Ahead -- 7.5. Conclusions -- References -- Chapter 8. Mathematical Modelling and Inquiry-Based Mathematics Education -- 8.1. Introduction -- 8.2. Mathematical Modelling and Inquiry-Based Mathematics Education in Our Teaching -- 8.3. Active Knowledge: Connecting IBME and MM -- 8.4. Examples From Three PLATINUM Partners -- 8.5. Conclusions -- References -- Chapter 9. Evaluation of Inquiry-Based Mathematics Education -- 9.1. Introduction -- 9.2. Research Methodology -- 9.3. Presentation of the Cases -- 9.4. Contribution of the Cross-Cases Study: Challenges and Issues -- 9.5. Conclusions -- References -- Part 3. Learning About Teaching: Case Studies -- Chapter 10. Introduction to the Case Studies in PLATINUM -- 10.1. Inquiry-Based Mathematics Education-Basis for Our Case Studies -- 10.2. Elements of Our Inquiry Activity in the Case Study Chapters Which Follow -- 10.3. Introduction to Each of the Case Studies -- 10.4. Concluding Thoughts -- References -- Chapter 11. Teaching Students to Think Mathematically Through Inquiry: The Norwegian Experience -- 11.1. Mathematics Education at the University of Agder -- 11.2. The MatRIC-PLATINUM Community at the University of Agder -- 11.3. Promoting Conceptual Understanding in a Differential Equations Course for Engineers -- 11.4. Innovation Versus Students' Inertia and Institutional Constraints -- 11.5. Lessons Learned -- Acknowledgements -- References. 
505 8 |a Chapter 12. Design and Implementation of an Inquiry-Based Mathematics Module for First-Year Students in Biomedical Sciences -- 12.1. Setting the Scene -- 12.2. Background Information -- 12.3. Work of the CoI on the First Version of the Module -- 12.4. Work of the CoI on the Redesign of the Module -- 12.5. Concluding Remarks -- Acknowledgements -- References -- Chapter 13. The First Experience With IBME at Masaryk University, Brno -- 13.1. Introduction -- 13.2. The Historical and Institutional Background -- 13.3. The Community of Inquiry at Masaryk University -- 13.4. Statistics 1: The Experience of Tamara and Patricia -- 13.5. Mathematical Analysis 1: The Experience of Lenny and Luke -- 13.6. Mathematics 2: The Experience of Marge -- 13.7. Summary -- References -- Chapter 14. In Critical Alignment With IBME -- 14.1. Introduction -- 14.2. Context of the Teaching Project of the LUH-group: The Course, the Concern for Reflective Agency, and the Sample Task -- 14.3. Phenomena and Contradictions of the Inquiry Teaching Project: Reflections Against the Background of Concepts Underlying Reflective Agency -- 14.4. Reflecting on Issues Regarding IBME, the Three-Layer Model and CoIs, and How They Underlie PLATINUM -- 14.5. Concluding Remark -- References -- Chapter 15. Two Decades of Inquiry-Based Developmental Activity in University Mathematics -- 15.1. Introduction -- 15.2. Chapter Structure -- 15.3. History -- 15.4. The Teaching Group: A Community of Inquiry -- 15.5. Inquiry-based Tasks in a Foundation Mathematics Course -- 15.6. Teaching Engineering Students -- 15.7. Discussion -- References -- Chapter 16. Teaching Inquiry-Oriented Mathematics: Establishing Support for Novice Lecturers -- 16.1. Introduction -- 16.2. Complutense University of Madrid -- 16.3. Community of Inquiry (CoI) at UCM -- 16.4. Designing Materials for Professional Development. 
505 8 |a 16.5. The Matrix Factorisation Inquiry Project -- 16.6. Implementation Results With Novice Lecturers -- 16.7. Concluding Remarks and Ongoing Work -- References -- Chapter 17. Development of a Community of Inquiry Based on Reflective Teaching -- 17.1. Introduction -- 17.2. Background, History, and the Team of the BUT CoI -- 17.3. Contribution of IBME to Reflective Teaching -- 17.4. Challenges, Achievements, and Experiences of the CoI -- 17.5. Conclusion and Future Development of the CoI -- References -- Chapter 18. Experience in Implementing IBME at the Borys Grinchenko Kyiv University -- 18.1. Development of an IBME Community at BGKU -- 18.2. IBME for the Formation of Conceptual Knowledge During Teaching of Mathematical Analysis -- 18.3. Evaluating Effectiveness of IBME to Achieve Educational Goals -- 18.4. Discussion of the Case in the Community of Inquiry -- References -- Part 4. Lessons Learned -- Chapter 19. Epilogue -- 19.1. Conceptualisation of Inquiry at University Level -- 19.2. Pathways in the Design of Materials in University Mathematics -- 19.3. Methods and Materials for Professional Development of Lecturers -- 19.4. And to Conclude -- Prázdná stránka. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
700 1 |a Rebenda, Josef. 
700 1 |a Hochmuth, Reinhard. 
700 1 |a Thomas, Stephanie. 
700 1 |a Artigue, Michèle. 
700 1 |a Gómez-Chacón, Inés. 
700 1 |a Khellaf, Sarah. 
700 1 |a Peters, Jana. 
700 1 |a Ruge, Johanna. 
700 1 |a Másilko, Lukáš. 
776 0 8 |i Print version:  |a Jaworski, Barbara  |t Inquiry in University Mathematics Teaching and Learning  |d Brno : Masaryk University,c2021  |z 9788021099821 
797 2 |a ProQuest (Firm) 
856 4 0 |u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=6913633  |z Click to View