Synthetic data for visual machine learning : A data-centric approach.
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Linköping :
Linköping University Electronic Press,
2022.
|
Edition: | 1st ed. |
Subjects: | |
Online Access: | Click to View |
Table of Contents:
- Intro
- Abstract
- Populärvetenskaplig Sammanfattning
- Acknowledgments
- List of Publications
- Contributions
- Contents
- 1 Introduction
- 1.1 Visual data
- 1.2 Image synthesis
- 1.2.1 Computer graphics
- 1.2.2 Generative image modeling
- 1.3 Deep learning
- 1.3.1 Training data
- 1.4 Objectives
- 1.5 Outline
- 2 Background
- 2.1 Deep learning
- 2.1.1 Neural networks
- 2.1.2 Basic concepts
- 2.1.3 Applications
- 2.2 Computer vision
- 2.3 Digital pathology
- 3 Computer graphics
- 3.1 Modeling
- 3.1.1 Basics
- 3.1.2 Common practices
- 3.1.3 Procedural modeling
- 3.2 Rendering
- 3.2.1 Light transport theory
- 3.2.2 Light transport simulation
- 4 Generative modeling
- 4.1 Fundamentals
- 4.2 Deep generative models
- 4.3 Generative adversarial networks
- 4.3.1 Challenges
- 4.3.2 Common variants
- 5 Synthetic data for deep learning
- 5.1 Data-centric AI
- 5.1.1 Common practices
- 5.2 Data collection
- 5.2.1 Discussion
- 5.3 Data generation
- 5.3.1 Computer graphics
- 5.3.2 Generative adversarial networks
- 5.3.3 Contributions
- 5.3.4 Discussion
- 5.4 Data augmentation
- 5.4.1 Image manipulations
- 5.4.2 Deep learning approaches
- 5.4.3 Contributions
- 5.4.4 Discussion
- 6 Conclusion
- 6.1 Contributions
- 6.1.1 Data generation
- 6.1.2 Data augmentation
- 6.2 Discussion
- 7 Outlook
- Bibliography
- Papers.