Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R : A Workbook.

Bibliographic Details
Main Author: Hair Jr., Joseph F.
Other Authors: Hult, G. Tomas M., Ringle, Christian M., Sarstedt, Marko., Danks, Nicholas P., Ray, Soumya.
Format: eBook
Language:English
Published: Cham : Springer International Publishing AG, 2021.
Edition:1st ed.
Series:Classroom Companion: Business Series
Subjects:
Online Access:Click to View
LEADER 05445nam a22004693i 4500
001 EBC6798733
003 MiAaPQ
005 20231204023219.0
006 m o d |
007 cr cnu||||||||
008 231204s2021 xx o ||||0 eng d
020 |a 9783030805197  |q (electronic bk.) 
020 |z 9783030805180 
035 |a (MiAaPQ)EBC6798733 
035 |a (Au-PeEL)EBL6798733 
035 |a (OCoLC)1285074600 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a HF5410-5417.5 
100 1 |a Hair Jr., Joseph F. 
245 1 0 |a Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R :  |b A Workbook. 
250 |a 1st ed. 
264 1 |a Cham :  |b Springer International Publishing AG,  |c 2021. 
264 4 |c ©2021. 
300 |a 1 online resource (208 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Classroom Companion: Business Series 
505 0 |a Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R -- Preface -- References -- Contents -- About the Authors -- 1: An Introduction to Structural Equation Modeling -- 1.1 What Is Structural Equation Modeling? -- 1.2 Principles of Structural Equation Modeling -- 1.2.1 Path Models with Latent Variables -- 1.2.2 Testing Theoretical Relationships -- 1.2.3 Measurement Theory -- 1.2.4 Structural Theory -- 1.3 PLS-SEM and CB-SEM -- 1.4 Considerations When Applying PLS-SEM -- 1.4.1 Key Characteristics of the PLS-SEM Method -- 1.4.2 Data Characteristics -- 1.4.2.1 Minimum Sample Size Requirements -- 1.4.2.2 Missing Value Treatment -- 1.4.2.3 Non-normal Data -- 1.4.2.4 Scales of Measurement -- 1.4.2.5 Secondary Data -- 1.4.3 Model Characteristics -- 1.5 Guidelines for Choosing Between PLS-SEM and CB-SEM -- References -- Suggested Readings -- 2: Overview of R and RStudio -- 2.1 Introduction -- 2.2 Explaining Our Syntax -- 2.3 Computational Statistics Using Programming -- 2.4 Introducing R and RStudio -- 2.4.1 Installing R and RStudio -- 2.4.2 Layout of RStudio -- 2.5 Organizing Your Projects -- 2.6 Packages -- 2.7 Writing R Scripts -- 2.8 How to Find Help in RStudio -- References -- Suggested Readings -- 3: The SEMinR Package -- 3.1 The Corporate Reputation Model -- 3.2 Loading and Cleaning the Data -- 3.3 Specifying the Measurement Models -- 3.4 Specifying the Structural Model -- 3.5 Estimating the Model -- 3.6 Summarizing the Model -- 3.7 Bootstrapping the Model -- 3.8 Plotting, Printing, and Exporting Results to Articles -- References -- Suggested Reading -- 4: Evaluation of Reflective Measurement Models -- 4.1 Introduction -- 4.2 Indicator Reliability -- 4.3 Internal Consistency Reliability -- 4.4 Convergent Validity -- 4.5 Discriminant Validity. 
505 8 |a 4.6 Case Study Illustration: Reflective Measurement Models -- References -- Suggested Reading -- 5: Evaluation of Formative Measurement Models -- 5.1 Convergent Validity -- 5.2 Indicator Collinearity -- 5.3 Statistical Significance and Relevance of the Indicator Weights -- Excurse -- 5.4 Case Study Illustration: Formative Measurement Models -- 5.4.1 Model Setup and Estimation -- Excurse -- 5.4.2 Reflective Measurement Model Evaluation -- 5.4.3 Formative Measurement Model Evaluation -- References -- Suggested Reading -- 6: Evaluation of the Structural Model -- 6.1 Assess Collinearity Issues of the Structural Model -- 6.2 Assess the Significance and Relevance of the Structural Model Relationships -- 6.3 Assess the Model's Explanatory Power -- 6.4 Assess the Model's Predictive Power -- 6.5 Model Comparisons -- 6.6 Case Study Illustration: Structural Model Evaluation -- Excurse -- Excurse -- References -- Suggested Reading -- 7: Mediation Analysis -- 7.1 Introduction -- 7.2 Systematic Mediation Analysis -- 7.2.1 Evaluation of the Mediation Model -- 7.2.2 Characterization of Outcomes -- 7.2.3 Testing Mediating Effects -- 7.3 Multiple Mediation Models -- 7.4 Case Study Illustration: Mediation Analysis -- References -- Suggested Reading -- 8: Moderation Analysis -- 8.1 Introduction -- 8.2 Types of Moderator Variables -- 8.3 Modeling Moderating Effects -- 8.4 Creating the Interaction Term -- 8.5 Model Evaluation -- 8.6 Result Interpretation -- 8.7 Case Study Illustration: Moderation Analysis -- References -- Suggested Reading -- Appendix A: The PLS-SEM Algorithm -- Appendix B: Assessing the Reflectively Measured Constructs in the Corporate Reputation Model -- Glossary -- Index. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
700 1 |a Hult, G. Tomas M. 
700 1 |a Ringle, Christian M. 
700 1 |a Sarstedt, Marko. 
700 1 |a Danks, Nicholas P. 
700 1 |a Ray, Soumya. 
776 0 8 |i Print version:  |a Hair Jr., Joseph F.  |t Partial Least Squares Structural Equation Modeling (PLS-SEM) Using R  |d Cham : Springer International Publishing AG,c2021  |z 9783030805180 
797 2 |a ProQuest (Firm) 
830 0 |a Classroom Companion: Business Series 
856 4 0 |u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=6798733  |z Click to View