|
|
|
|
LEADER |
07532nam a22004453i 4500 |
001 |
EBC6733486 |
003 |
MiAaPQ |
005 |
20231204023218.0 |
006 |
m o d | |
007 |
cr cnu|||||||| |
008 |
231204s2021 xx o ||||0 eng d |
020 |
|
|
|a 9783030721923
|q (electronic bk.)
|
020 |
|
|
|z 9783030721916
|
035 |
|
|
|a (MiAaPQ)EBC6733486
|
035 |
|
|
|a (Au-PeEL)EBL6733486
|
035 |
|
|
|a (OCoLC)1272955903
|
040 |
|
|
|a MiAaPQ
|b eng
|e rda
|e pn
|c MiAaPQ
|d MiAaPQ
|
050 |
|
4 |
|a TA418.5-.84
|
100 |
1 |
|
|a Sause, Markus G. R.
|
245 |
1 |
0 |
|a Structural Health Monitoring Damage Detection Systems for Aerospace.
|
250 |
|
|
|a 1st ed.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing AG,
|c 2021.
|
264 |
|
4 |
|c ©2021.
|
300 |
|
|
|a 1 online resource (292 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Springer Aerospace Technology Series
|
505 |
0 |
|
|a Intro -- Preface -- Acknowledgment -- Contents -- Contributors -- Chapter 1: Introduction -- Chapter 2: Monitoring Tasks in Aerospace -- 2.1 Condition Monitoring -- 2.2 Operation Monitoring (OM) -- 2.3 Damage Monitoring (DM) -- 2.4 Challenges -- References -- Chapter 3: Defect Types -- 3.1 Metallic Materials -- 3.1.1 Defects During the Manufacturing Process -- 3.1.2 Defects During In-service Conditions -- 3.1.2.1 Fatigue -- 3.1.2.2 Corrosion -- 3.1.2.3 Creep -- 3.1.2.4 Operational Overload -- 3.1.2.5 Wear -- 3.1.2.6 Extreme Weather Conditions -- 3.1.2.7 Miscellaneous Defect Types in Metals -- 3.2 Composite Materials -- 3.2.1 Disbonds -- 3.2.2 Delamination -- 3.2.3 Foreign Inclusion -- 3.2.4 Matrix Cracking -- 3.2.5 Porosity -- 3.2.6 Fibre Breakage -- 3.2.7 Other Composite Laminate Typical Defects -- 3.2.8 Typical Honeycomb Core Defects -- 3.2.9 Typical Foam Core Defects -- 3.2.10 Ingress of Moisture and Temperature -- 3.2.11 Fatigue -- 3.3 Defects in Coatings -- 3.3.1 Defects During the Manufacturing Process -- 3.3.2 Defects During In-service Conditions -- 3.4 Defects in Joints -- 3.4.1 Adhesively Bonded Joints -- 3.4.2 Friction Stir-Welded Joints -- 3.5 Concluding Remarks -- References -- Chapter 4: Aerospace Requirements -- 4.1 Power Consumption -- 4.2 System Reliability/Durability -- 4.3 Effect of Operational Conditions -- 4.4 Size/Weight Restrictions -- 4.5 Optimal Sensor Placement -- 4.6 Summary -- References -- Chapter 5: Ultrasonic Methods -- 5.1 Introduction to Ultrasonic Inspection -- 5.2 Ultrasonic Guided Wave (GW) Inspection -- 5.2.1 Governing Equations of GW Wave Propagation -- 5.2.1.1 Waves in Unbounded Media -- 5.2.1.2 Boundary Conditions -- 5.2.1.3 Dispersion Relation -- 5.2.2 Active and Passive Guided Wave Inspection -- 5.2.3 Dispersion and Attenuation -- 5.2.4 Guided Wave Excitation and Mode Selection -- 5.3 Defect Detection.
|
505 |
8 |
|
|a 5.3.1 Defect Localisation and Imaging: Sparse, Phased Arrays and Guided Wave Tomography -- 5.3.2 Guided Wave Interaction with Actual Structural Defect -- 5.4 Reliability of SHM Systems -- 5.4.1 Basic Concepts of POD and PFA -- 5.4.2 Sources of Variability of SHM System -- 5.4.3 Analysis of Environmental and Operational Conditions -- 5.4.4 POD Assessment Solutions -- 5.4.5 Model-Assisted POD for SHM System -- 5.5 Guided Wave Applications to SHM of Aerospace Components -- 5.6 Summary -- References -- Chapter 6: Vibration Response-Based Damage Detection -- 6.1 Introduction -- 6.2 The Rationale of Vibration-Based Methods -- 6.3 Environmental and Operational Influences -- 6.4 Modal-Based Methods and Damage Features -- 6.4.1 Natural Frequencies -- 6.4.2 Mode Shapes -- 6.4.3 Modal Slope -- 6.4.4 Modal Curvature -- 6.4.5 Strain Energy -- 6.4.6 Damping -- 6.4.7 Interpolation Error -- 6.5 Time Series Methods -- 6.5.1 Autoregressive Parameters -- 6.5.2 Intrinsic Mode Function and Hilbert Spectrum -- 6.5.3 Signal Components -- 6.5.4 Damage Indices Based on Extracted Features -- 6.5.5 Singular Spectrum Analysis (SSA) -- 6.5.6 First-Order Eigen Perturbation (FOEP) Technique -- 6.6 Time-Frequency Methods -- 6.6.1 Scalogram and Spectrogram -- 6.7 Drawbacks and Limitations -- 6.8 Case Studies -- 6.8.1 Vibration-Based Damage Detection in a Composite Plate by Means of Acceleration Responses -- 6.8.2 Numerical Comparison of Modal-Based Methods for Damage Detection -- 6.8.3 Vibration-Based Monitoring of a Scaled Wind Turbine Blade by Means of Acceleration and Strain Responses -- 6.9 Conclusions -- References -- Chapter 7: Acoustic Emission -- 7.1 Introduction -- 7.2 Basic Experimental Details and Parameters -- 7.3 Fracture Mode Characterization in Plate Structures -- 7.3.1 AE Source Types -- 7.3.2 Procedures for AE Source Identification -- 7.4 Localization.
|
505 |
8 |
|
|a 7.5 Influence of Propagation -- 7.6 Different Sensor Types -- 7.7 Dedicated Aeronautics Applications and Examples -- 7.8 General Considerations -- References -- Chapter 8: Strain Monitoring -- 8.1 Strain Gauges -- 8.2 Optical Fiber Sensors -- 8.2.1 Introduction -- 8.2.2 Types of Optical Fiber Sensors -- 8.2.3 Interferometry -- 8.2.4 Mach-Zehnder -- 8.2.5 Michelson Interferometer -- 8.2.6 Sagnac Interferometer -- 8.2.7 Fabry-Pérot -- 8.2.8 Fiber Bragg Grating Sensors -- 8.2.9 Other FBG Grating Structures -- 8.2.10 State-of-the Art Damage Detection Systems -- 8.2.11 Acoustic Emission Interrogator (OptimAE) -- 8.2.12 OFS Applications in Aeronautics -- 8.3 Strain-Based SHM -- References -- Chapter 9: Data Reduction Strategies -- 9.1 Introduction -- 9.2 Signal Processing -- 9.3 Data Reduction Strategies -- 9.3.1 Sampling Rates of Different SHM Methods -- 9.3.1.1 Ultrasonics -- 9.3.1.2 Vibration-Based Methods -- 9.3.1.3 Acoustic Emission -- 9.3.1.4 Strain Monitoring -- 9.3.2 Established Approaches for Data Reduction -- 9.3.3 Open Challenges for Data Reduction in SHM Systems -- 9.3.3.1 Ultrasonic Systems -- 9.3.3.2 Reliability Issues Related to Loss of Information Via Data Reduction -- 9.4 Wireless Sensing Considerations -- 9.4.1 Network Topologies -- 9.4.2 Data Rates -- 9.4.3 Synchronization -- 9.4.4 Power Management and Consumption -- 9.4.5 Future Developments in Energy Harvesting and Power Management -- 9.5 Data Management -- 9.5.1 Reliability -- 9.5.2 Liability Issues -- 9.5.3 Ground-Based Systems -- 9.6 Conclusions -- References -- Chapter 10: Conclusions -- 10.1 Overview of the SHM Methods for Aerospace Integration -- 10.1.1 Ultrasonic Guided Wave Based Monitoring -- 10.1.2 Vibration-Based Monitoring -- 10.1.3 Acoustic Emission Monitoring -- 10.1.4 Strain-Based Monitoring -- 10.2 Defect Detectability.
|
505 |
8 |
|
|a 10.3 Advantages and Disadvantages of SHM Techniques -- 10.4 Roadmap for SHM Integration in Future Aircraft -- 10.5 Future Research Directions -- Correction to: Structural Health Monitoring Damage Detection Systems for Aerospace.
|
588 |
|
|
|a Description based on publisher supplied metadata and other sources.
|
590 |
|
|
|a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Jasiūnienė, Elena.
|
776 |
0 |
8 |
|i Print version:
|a Sause, Markus G. R.
|t Structural Health Monitoring Damage Detection Systems for Aerospace
|d Cham : Springer International Publishing AG,c2021
|z 9783030721916
|
797 |
2 |
|
|a ProQuest (Firm)
|
830 |
|
0 |
|a Springer Aerospace Technology Series
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=6733486
|z Click to View
|