Probability in Electrical Engineering and Computer Science : An Application-Driven Course.

Bibliographic Details
Main Author: Walrand, Jean.
Format: eBook
Language:English
Published: Cham : Springer International Publishing AG, 2021.
Edition:1st ed.
Subjects:
Online Access:Click to View
Table of Contents:
  • Intro
  • Preface
  • Acknowledgements
  • Introduction
  • About This Second Edition
  • Contents
  • 1 PageRank: A
  • 1.1 Model
  • 1.2 Markov Chain
  • 1.2.1 General Definition
  • 1.2.2 Distribution After n Steps and Invariant Distribution
  • 1.3 Analysis
  • 1.3.1 Irreducibility and Aperiodicity
  • 1.3.2 Big Theorem
  • 1.3.3 Long-Term Fraction of Time
  • 1.4 Illustrations
  • 1.5 Hitting Time
  • 1.5.1 Mean Hitting Time
  • 1.5.2 Probability of Hitting a State Before Another
  • 1.5.3 FSE for Markov Chain
  • 1.6 Summary
  • 1.6.1 Key Equations and Formulas
  • 1.7 References
  • 1.8 Problems
  • 2 PageRank: B
  • 2.1 Sample Space
  • 2.2 Laws of Large Numbers for Coin Flips
  • 2.2.1 Convergence in Probability
  • 2.2.2 Almost Sure Convergence
  • 2.3 Laws of Large Numbers for i.i.d. RVs
  • 2.3.1 Weak Law of Large Numbers
  • 2.3.2 Strong Law of Large Numbers
  • 2.4 Law of Large Numbers for Markov Chains
  • 2.5 Proof of Big Theorem
  • 2.5.1 Proof of Theorem 1.1 (a)
  • 2.5.2 Proof of Theorem 1.1 (b)
  • 2.5.3 Periodicity
  • 2.6 Summary
  • 2.6.1 Key Equations and Formulas
  • 2.7 References
  • 2.8 Problems
  • 3 Multiplexing: A
  • 3.1 Sharing Links
  • 3.2 Gaussian Random Variable and CLT
  • 3.2.1 Binomial and Gaussian
  • 3.2.2 Multiplexing and Gaussian
  • 3.2.3 Confidence Intervals
  • 3.3 Buffers
  • 3.3.1 Markov Chain Model of Buffer
  • 3.3.2 Invariant Distribution
  • 3.3.3 Average Delay
  • 3.3.4 A Note About Arrivals
  • 3.3.5 Little's Law
  • 3.4 Multiple Access
  • 3.5 Summary
  • 3.5.1 Key Equations and Formulas
  • 3.6 References
  • 3.7 Problems
  • 4 Multiplexing: B
  • 4.1 Characteristic Functions
  • 4.2 Proof of CLT (Sketch)
  • 4.3 Moments of N(0, 1)
  • 4.4 Sum of Squares of 2 i.i.d. N(0, 1)
  • 4.5 Two Applications of Characteristic Functions
  • 4.5.1 Poisson as a Limit of Binomial
  • 4.5.2 Exponential as Limit of Geometric
  • 4.6 Error Function.
  • 4.7 Adaptive Multiple Access
  • 4.8 Summary
  • 4.8.1 Key Equations and Formulas
  • 4.9 References
  • 4.10 Problems
  • 5 Networks: A
  • 5.1 Spreading Rumors
  • 5.2 Cascades
  • 5.3 Seeding the Market
  • 5.4 Manufacturing of Consent
  • 5.5 Polarization
  • 5.6 M/M/1 Queue
  • 5.7 Network of Queues
  • 5.8 Optimizing Capacity
  • 5.9 Internet and Network of Queues
  • 5.10 Product-Form Networks
  • 5.10.1 Example
  • 5.11 References
  • 5.12 Problems
  • 6 Networks-B
  • 6.1 Social Networks
  • 6.2 Continuous-Time Markov Chains
  • 6.2.1 Two-State Markov Chain
  • 6.2.2 Three-State Markov Chain
  • 6.2.3 General Case
  • 6.2.4 Uniformization
  • 6.2.5 Time Reversal
  • 6.3 Product-Form Networks
  • 6.4 Proof of Theorem 5.7
  • 6.5 References
  • 7 Digital Link-A
  • 7.1 Digital Link
  • 7.2 Detection and Bayes' Rule
  • 7.2.1 Bayes' Rule
  • 7.2.2 Circumstances vs. Causes
  • 7.2.3 MAP and MLE
  • Example: Ice Cream and Sunburn
  • 7.2.4 Binary Symmetric Channel
  • 7.3 Huffman Codes
  • 7.4 Gaussian Channel
  • Simulation
  • 7.4.1 BPSK
  • 7.5 Multidimensional Gaussian Channel
  • 7.5.1 MLE in Multidimensional Case
  • 7.6 Hypothesis Testing
  • 7.6.1 Formulation
  • 7.6.2 Solution
  • 7.6.3 Examples
  • Gaussian Channel
  • Mean of Exponential RVs
  • Bias of a Coin
  • Discrete Observations
  • 7.7 Summary
  • 7.7.1 Key Equations and Formulas
  • 7.8 References
  • 7.9 Problems
  • 8 Digital Link-B
  • 8.1 Proof of Optimality of the Huffman Code
  • 8.2 Proof of Neyman-Pearson Theorem 7.4
  • 8.3 Jointly Gaussian Random Variables
  • 8.3.1 Density of Jointly Gaussian Random Variables
  • 8.4 Elementary Statistics
  • 8.4.1 Zero-Mean?
  • 8.4.2 Unknown Variance
  • 8.4.3 Difference of Means
  • 8.4.4 Mean in Hyperplane?
  • 8.4.5 ANOVA
  • 8.5 LDPC Codes
  • 8.6 Summary
  • 8.6.1 Key Equations and Formulas
  • 8.7 References
  • 8.8 Problems
  • 9 Tracking-A
  • 9.1 Examples
  • 9.2 Estimation Problem.
  • 9.3 Linear Least Squares Estimates
  • 9.3.1 Projection
  • 9.4 Linear Regression
  • 9.5 A Note on Overfitting
  • 9.6 MMSE
  • 9.6.1 MMSE for Jointly Gaussian
  • 9.7 Vector Case
  • 9.8 Kalman Filter
  • 9.8.1 The Filter
  • 9.8.2 Examples
  • Random Walk
  • Random Walk with Unknown Drift
  • Random Walk with Changing Drift
  • Falling Object
  • 9.9 Summary
  • 9.9.1 Key Equations and Formulas
  • 9.10 References
  • 9.11 Problems
  • 10 Tracking: B
  • 10.1 Updating LLSE
  • 10.2 Derivation of Kalman Filter
  • 10.3 Properties of Kalman Filter
  • 10.3.1 Observability
  • 10.3.2 Reachability
  • 10.4 Extended Kalman Filter
  • 10.4.1 Examples
  • 10.5 Summary
  • 10.5.1 Key Equations and Formulas
  • 10.6 References
  • 11 Speech Recognition: A
  • 11.1 Learning: Concepts and Examples
  • 11.2 Hidden Markov Chain
  • 11.3 Expectation Maximization and Clustering
  • 11.3.1 A Simple Clustering Problem
  • 11.3.2 A Second Look
  • 11.4 Learning: Hidden Markov Chain
  • 11.4.1 HEM
  • 11.4.2 Training the Viterbi Algorithm
  • 11.5 Summary
  • 11.5.1 Key Equations and Formulas
  • 11.6 References
  • 11.7 Problems
  • 12 Speech Recognition: B
  • 12.1 Online Linear Regression
  • 12.2 Theory of Stochastic Gradient Projection
  • 12.2.1 Gradient Projection
  • 12.2.2 Stochastic Gradient Projection
  • 12.2.3 Martingale Convergence
  • 12.3 Big Data
  • 12.3.1 Relevant Data
  • 12.3.2 Compressed Sensing
  • 12.3.3 Recommendation Systems
  • 12.4 Deep Neural Networks
  • 12.4.1 Calculating Derivatives
  • 12.5 Summary
  • 12.5.1 Key Equations and Formulas
  • 12.6 References
  • 12.7 Problems
  • 13 Route Planning: A
  • 13.1 Model
  • 13.2 Formulation 1: Pre-planning
  • 13.3 Formulation 2: Adapting
  • 13.4 Markov Decision Problem
  • 13.4.1 Examples
  • 13.5 Infinite Horizon
  • 13.6 Summary
  • 13.6.1 Key Equations and Formulas
  • 13.7 References
  • 13.8 Problems
  • 14 Route Planning: B
  • 14.1 LQG Control.
  • 14.1.1 Letting N →∞
  • 14.2 LQG with Noisy Observations
  • 14.2.1 Letting N →∞
  • 14.3 Partially Observed MDP
  • 14.3.1 Example: Searching for Your Keys
  • 14.4 Summary
  • 14.4.1 Key Equations and Formulas
  • 14.5 References
  • 14.6 Problems
  • 15 Perspective and Complements
  • 15.1 Inference
  • 15.2 Sufficient Statistic
  • 15.2.1 Interpretation
  • 15.3 Infinite Markov Chains
  • 15.3.1 Lyapunov-Foster Criterion
  • 15.4 Poisson Process
  • 15.4.1 Definition
  • 15.4.2 Independent Increments
  • 15.4.3 Number of Jumps
  • 15.5 Boosting
  • 15.6 Multi-Armed Bandits
  • 15.7 Capacity of BSC
  • 15.8 Bounds on Probabilities
  • 15.8.1 Applying the Bounds to Multiplexing
  • 15.9 Martingales
  • 15.9.1 Definitions
  • 15.9.2 Examples
  • 15.9.3 Law of Large Numbers
  • 15.9.4 Wald's Equality
  • 15.10 Summary
  • 15.10.1 Key Equations and Formulas
  • 15.11 References
  • 15.12 Problems
  • Correction to: Probability in Electrical Engineering and Computer Science
  • Correction to: Probability in Electrical Engineering and Computer Science (Funding Information)
  • A Elementary Probability
  • A.1 Symmetry
  • A.2 Conditioning
  • A.3 Common Confusion
  • A.4 Independence
  • A.5 Expectation
  • A.6 Variance
  • A.7 Inequalities
  • A.8 Law of Large Numbers
  • A.9 Covariance and Regression
  • A.10 Why Do We Need a More Sophisticated Formalism?
  • A.11 References
  • A.12 Solved Problems
  • B Basic Probability
  • B.1 General Framework
  • B.1.1 Probability Space
  • B.1.2 Borel-Cantelli Theorem
  • B.1.3 Independence
  • B.1.4 Converse of Borel-Cantelli Theorem
  • B.1.5 Conditional Probability
  • B.1.6 Random Variable
  • B.2 Discrete Random Variable
  • B.2.1 Definition
  • B.2.2 Expectation
  • B.2.3 Function of a RV
  • B.2.4 Nonnegative RV
  • B.2.5 Linearity of Expectation
  • B.2.6 Monotonicity of Expectation
  • B.2.7 Variance, Standard Deviation.
  • B.2.8 Important Discrete Random Variables
  • B.3 Multiple Discrete Random Variables
  • B.3.1 Joint Distribution
  • B.3.2 Independence
  • B.3.3 Expectation of Function of Multiple RVs
  • B.3.4 Covariance
  • B.3.5 Conditional Expectation
  • B.3.6 Conditional Expectation of a Function
  • B.4 General Random Variables
  • B.4.1 Definitions
  • B.4.2 Examples
  • B.4.3 Expectation
  • B.4.4 Continuity of Expectation
  • B.5 Multiple Random Variables
  • B.5.1 Random Vector
  • B.5.2 Minimum and Maximum of Independent RVs
  • B.5.3 Sum of Independent Random Variables
  • B.6 Random Vectors
  • B.6.1 Orthogonality and Projection
  • B.7 Density of a Function of Random Variables
  • B.7.1 Linear Transformations
  • B.7.2 Nonlinear Transformations
  • B.8 References
  • B.9 Problems
  • References
  • Index.