Probability in Electrical Engineering and Computer Science : An Application-Driven Course.
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Cham :
Springer International Publishing AG,
2021.
|
Edition: | 1st ed. |
Subjects: | |
Online Access: | Click to View |
Table of Contents:
- Intro
- Preface
- Acknowledgements
- Introduction
- About This Second Edition
- Contents
- 1 PageRank: A
- 1.1 Model
- 1.2 Markov Chain
- 1.2.1 General Definition
- 1.2.2 Distribution After n Steps and Invariant Distribution
- 1.3 Analysis
- 1.3.1 Irreducibility and Aperiodicity
- 1.3.2 Big Theorem
- 1.3.3 Long-Term Fraction of Time
- 1.4 Illustrations
- 1.5 Hitting Time
- 1.5.1 Mean Hitting Time
- 1.5.2 Probability of Hitting a State Before Another
- 1.5.3 FSE for Markov Chain
- 1.6 Summary
- 1.6.1 Key Equations and Formulas
- 1.7 References
- 1.8 Problems
- 2 PageRank: B
- 2.1 Sample Space
- 2.2 Laws of Large Numbers for Coin Flips
- 2.2.1 Convergence in Probability
- 2.2.2 Almost Sure Convergence
- 2.3 Laws of Large Numbers for i.i.d. RVs
- 2.3.1 Weak Law of Large Numbers
- 2.3.2 Strong Law of Large Numbers
- 2.4 Law of Large Numbers for Markov Chains
- 2.5 Proof of Big Theorem
- 2.5.1 Proof of Theorem 1.1 (a)
- 2.5.2 Proof of Theorem 1.1 (b)
- 2.5.3 Periodicity
- 2.6 Summary
- 2.6.1 Key Equations and Formulas
- 2.7 References
- 2.8 Problems
- 3 Multiplexing: A
- 3.1 Sharing Links
- 3.2 Gaussian Random Variable and CLT
- 3.2.1 Binomial and Gaussian
- 3.2.2 Multiplexing and Gaussian
- 3.2.3 Confidence Intervals
- 3.3 Buffers
- 3.3.1 Markov Chain Model of Buffer
- 3.3.2 Invariant Distribution
- 3.3.3 Average Delay
- 3.3.4 A Note About Arrivals
- 3.3.5 Little's Law
- 3.4 Multiple Access
- 3.5 Summary
- 3.5.1 Key Equations and Formulas
- 3.6 References
- 3.7 Problems
- 4 Multiplexing: B
- 4.1 Characteristic Functions
- 4.2 Proof of CLT (Sketch)
- 4.3 Moments of N(0, 1)
- 4.4 Sum of Squares of 2 i.i.d. N(0, 1)
- 4.5 Two Applications of Characteristic Functions
- 4.5.1 Poisson as a Limit of Binomial
- 4.5.2 Exponential as Limit of Geometric
- 4.6 Error Function.
- 4.7 Adaptive Multiple Access
- 4.8 Summary
- 4.8.1 Key Equations and Formulas
- 4.9 References
- 4.10 Problems
- 5 Networks: A
- 5.1 Spreading Rumors
- 5.2 Cascades
- 5.3 Seeding the Market
- 5.4 Manufacturing of Consent
- 5.5 Polarization
- 5.6 M/M/1 Queue
- 5.7 Network of Queues
- 5.8 Optimizing Capacity
- 5.9 Internet and Network of Queues
- 5.10 Product-Form Networks
- 5.10.1 Example
- 5.11 References
- 5.12 Problems
- 6 Networks-B
- 6.1 Social Networks
- 6.2 Continuous-Time Markov Chains
- 6.2.1 Two-State Markov Chain
- 6.2.2 Three-State Markov Chain
- 6.2.3 General Case
- 6.2.4 Uniformization
- 6.2.5 Time Reversal
- 6.3 Product-Form Networks
- 6.4 Proof of Theorem 5.7
- 6.5 References
- 7 Digital Link-A
- 7.1 Digital Link
- 7.2 Detection and Bayes' Rule
- 7.2.1 Bayes' Rule
- 7.2.2 Circumstances vs. Causes
- 7.2.3 MAP and MLE
- Example: Ice Cream and Sunburn
- 7.2.4 Binary Symmetric Channel
- 7.3 Huffman Codes
- 7.4 Gaussian Channel
- Simulation
- 7.4.1 BPSK
- 7.5 Multidimensional Gaussian Channel
- 7.5.1 MLE in Multidimensional Case
- 7.6 Hypothesis Testing
- 7.6.1 Formulation
- 7.6.2 Solution
- 7.6.3 Examples
- Gaussian Channel
- Mean of Exponential RVs
- Bias of a Coin
- Discrete Observations
- 7.7 Summary
- 7.7.1 Key Equations and Formulas
- 7.8 References
- 7.9 Problems
- 8 Digital Link-B
- 8.1 Proof of Optimality of the Huffman Code
- 8.2 Proof of Neyman-Pearson Theorem 7.4
- 8.3 Jointly Gaussian Random Variables
- 8.3.1 Density of Jointly Gaussian Random Variables
- 8.4 Elementary Statistics
- 8.4.1 Zero-Mean?
- 8.4.2 Unknown Variance
- 8.4.3 Difference of Means
- 8.4.4 Mean in Hyperplane?
- 8.4.5 ANOVA
- 8.5 LDPC Codes
- 8.6 Summary
- 8.6.1 Key Equations and Formulas
- 8.7 References
- 8.8 Problems
- 9 Tracking-A
- 9.1 Examples
- 9.2 Estimation Problem.
- 9.3 Linear Least Squares Estimates
- 9.3.1 Projection
- 9.4 Linear Regression
- 9.5 A Note on Overfitting
- 9.6 MMSE
- 9.6.1 MMSE for Jointly Gaussian
- 9.7 Vector Case
- 9.8 Kalman Filter
- 9.8.1 The Filter
- 9.8.2 Examples
- Random Walk
- Random Walk with Unknown Drift
- Random Walk with Changing Drift
- Falling Object
- 9.9 Summary
- 9.9.1 Key Equations and Formulas
- 9.10 References
- 9.11 Problems
- 10 Tracking: B
- 10.1 Updating LLSE
- 10.2 Derivation of Kalman Filter
- 10.3 Properties of Kalman Filter
- 10.3.1 Observability
- 10.3.2 Reachability
- 10.4 Extended Kalman Filter
- 10.4.1 Examples
- 10.5 Summary
- 10.5.1 Key Equations and Formulas
- 10.6 References
- 11 Speech Recognition: A
- 11.1 Learning: Concepts and Examples
- 11.2 Hidden Markov Chain
- 11.3 Expectation Maximization and Clustering
- 11.3.1 A Simple Clustering Problem
- 11.3.2 A Second Look
- 11.4 Learning: Hidden Markov Chain
- 11.4.1 HEM
- 11.4.2 Training the Viterbi Algorithm
- 11.5 Summary
- 11.5.1 Key Equations and Formulas
- 11.6 References
- 11.7 Problems
- 12 Speech Recognition: B
- 12.1 Online Linear Regression
- 12.2 Theory of Stochastic Gradient Projection
- 12.2.1 Gradient Projection
- 12.2.2 Stochastic Gradient Projection
- 12.2.3 Martingale Convergence
- 12.3 Big Data
- 12.3.1 Relevant Data
- 12.3.2 Compressed Sensing
- 12.3.3 Recommendation Systems
- 12.4 Deep Neural Networks
- 12.4.1 Calculating Derivatives
- 12.5 Summary
- 12.5.1 Key Equations and Formulas
- 12.6 References
- 12.7 Problems
- 13 Route Planning: A
- 13.1 Model
- 13.2 Formulation 1: Pre-planning
- 13.3 Formulation 2: Adapting
- 13.4 Markov Decision Problem
- 13.4.1 Examples
- 13.5 Infinite Horizon
- 13.6 Summary
- 13.6.1 Key Equations and Formulas
- 13.7 References
- 13.8 Problems
- 14 Route Planning: B
- 14.1 LQG Control.
- 14.1.1 Letting N →∞
- 14.2 LQG with Noisy Observations
- 14.2.1 Letting N →∞
- 14.3 Partially Observed MDP
- 14.3.1 Example: Searching for Your Keys
- 14.4 Summary
- 14.4.1 Key Equations and Formulas
- 14.5 References
- 14.6 Problems
- 15 Perspective and Complements
- 15.1 Inference
- 15.2 Sufficient Statistic
- 15.2.1 Interpretation
- 15.3 Infinite Markov Chains
- 15.3.1 Lyapunov-Foster Criterion
- 15.4 Poisson Process
- 15.4.1 Definition
- 15.4.2 Independent Increments
- 15.4.3 Number of Jumps
- 15.5 Boosting
- 15.6 Multi-Armed Bandits
- 15.7 Capacity of BSC
- 15.8 Bounds on Probabilities
- 15.8.1 Applying the Bounds to Multiplexing
- 15.9 Martingales
- 15.9.1 Definitions
- 15.9.2 Examples
- 15.9.3 Law of Large Numbers
- 15.9.4 Wald's Equality
- 15.10 Summary
- 15.10.1 Key Equations and Formulas
- 15.11 References
- 15.12 Problems
- Correction to: Probability in Electrical Engineering and Computer Science
- Correction to: Probability in Electrical Engineering and Computer Science (Funding Information)
- A Elementary Probability
- A.1 Symmetry
- A.2 Conditioning
- A.3 Common Confusion
- A.4 Independence
- A.5 Expectation
- A.6 Variance
- A.7 Inequalities
- A.8 Law of Large Numbers
- A.9 Covariance and Regression
- A.10 Why Do We Need a More Sophisticated Formalism?
- A.11 References
- A.12 Solved Problems
- B Basic Probability
- B.1 General Framework
- B.1.1 Probability Space
- B.1.2 Borel-Cantelli Theorem
- B.1.3 Independence
- B.1.4 Converse of Borel-Cantelli Theorem
- B.1.5 Conditional Probability
- B.1.6 Random Variable
- B.2 Discrete Random Variable
- B.2.1 Definition
- B.2.2 Expectation
- B.2.3 Function of a RV
- B.2.4 Nonnegative RV
- B.2.5 Linearity of Expectation
- B.2.6 Monotonicity of Expectation
- B.2.7 Variance, Standard Deviation.
- B.2.8 Important Discrete Random Variables
- B.3 Multiple Discrete Random Variables
- B.3.1 Joint Distribution
- B.3.2 Independence
- B.3.3 Expectation of Function of Multiple RVs
- B.3.4 Covariance
- B.3.5 Conditional Expectation
- B.3.6 Conditional Expectation of a Function
- B.4 General Random Variables
- B.4.1 Definitions
- B.4.2 Examples
- B.4.3 Expectation
- B.4.4 Continuity of Expectation
- B.5 Multiple Random Variables
- B.5.1 Random Vector
- B.5.2 Minimum and Maximum of Independent RVs
- B.5.3 Sum of Independent Random Variables
- B.6 Random Vectors
- B.6.1 Orthogonality and Projection
- B.7 Density of a Function of Random Variables
- B.7.1 Linear Transformations
- B.7.2 Nonlinear Transformations
- B.8 References
- B.9 Problems
- References
- Index.