Magnetism and Accelerator-Based Light Sources : Proceedings of the 7th International School ''Synchrotron Radiation and Magnetism'', Mittelwihr (France) 2018.

Bibliographic Details
Main Author: Bulou, Hervé.
Other Authors: Joly, Loïc., Mariot, Jean-Michel., Scheurer, Fabrice.
Format: eBook
Language:English
Published: Cham : Springer International Publishing AG, 2021.
Edition:1st ed.
Series:Springer Proceedings in Physics Series
Subjects:
Online Access:Click to View
Table of Contents:
  • Intro
  • Foreword
  • Preface
  • Teachers
  • Scientific Committee
  • Acknowledgements
  • Contents
  • Contributors
  • 1 X-Ray Sources at Large-Scale Facilities
  • 1.1 Introduction
  • 1.2 A Brief Description of Synchrotrons
  • 1.2.1 Introduction
  • 1.2.2 The Lorentz Factor
  • 1.2.3 Dipole Radiation and Synchrotron Radiation
  • 1.2.4 Spectral Flux, Emittance, and Brilliance
  • 1.2.5 The Radio-Frequency Power Supply
  • 1.2.6 Radiation Equilibrium
  • 1.2.7 Coherence
  • 1.3 Sources of Synchrotron Radiation
  • 1.3.1 Bending Magnets and Wigglers
  • 1.3.2 Undulators
  • 1.3.3 Polarization of Synchrotron Radiation
  • 1.4 Diffraction-Limited Storage Rings
  • 1.5 X-Ray Free-Electron Lasers
  • 1.5.1 XFEL Architecture
  • 1.5.2 The SASE Process
  • 1.5.3 Concluding Remarks
  • 1.6 Summary
  • References
  • 2 Concepts in Magnetism
  • 2.1 Introduction
  • 2.2 Exchange
  • 2.2.1 Direct Exchange
  • 2.2.2 Indirect Exchange
  • 2.2.3 Superexchange
  • 2.3 Consequences of the Heisenberg Exchange Interaction
  • 2.3.1 Two Interacting Spin-12 Particles
  • 2.3.2 A Chain of Spins
  • 2.3.3 Three Spins
  • 2.4 Orbitals
  • 2.4.1 Transition Metal Ions
  • 2.4.2 Spin-Orbit Interaction and Crystal Fields
  • 2.4.3 Jahn-Teller Effect
  • 2.5 Conclusion
  • References
  • 3 Electronic Structure Theory for X-Ray Absorption and Photoemission Spectroscopy
  • 3.1 Introduction
  • 3.2 Light-Matter Interaction
  • 3.3 Ground State Electronic Structure Theory
  • 3.3.1 Hartree-Fock Approximation
  • 3.3.2 Density Functional Theory
  • 3.4 Absorption Spectra in the Independent Particle Approximation
  • 3.4.1 Dipole Selection Rules and Density of States
  • 3.5 Absorption Spectra in Linear Response TDDFT
  • 3.5.1 Time-Dependent Density Functional Theory
  • 3.5.2 Linear Response Theory
  • 3.5.3 Absorption Spectra
  • 3.6 Photoemission Spectroscopy
  • 3.6.1 Angle-Resolved Photoemission Spectroscopy.
  • 3.7 Quasiparticle Theory
  • 3.7.1 Green's Functions
  • 3.7.2 GW Approximation
  • 3.7.3 Bethe-Salpeter Equation
  • 3.7.4 Static and Dynamical Mean-Field Theory
  • 3.8 Conclusions
  • References
  • 4 X-ray Dichroisms in Spherical Tensor and Green's Function Formalism
  • 4.1 Introduction
  • 4.1.1 The X-ray Absorption Cross Section
  • 4.1.2 Definition of Dichroisms
  • 4.1.3 The Many-Body Problem in Spectra Calculations
  • 4.1.4 Codes for Ligand-Field Multiplet Calculations
  • 4.2 Spherical Tensor Expansion of the XAS Cross Section
  • 4.2.1 The Case of Electric Dipole Transitions
  • 4.2.2 The Case of Electric Quadrupole Transitions
  • 4.2.3 Term a=0
  • 4.2.4 Term a=1
  • 4.2.5 Term a=2
  • 4.2.6 Term a=3
  • 4.2.7 Term a=4
  • 4.3 Conclusion
  • References
  • 5 Spintronics and Synchrotron Radiation
  • 5.1 General Introduction to Spintronics: From Magnetoresistive Effects to the Physics of Spin-Transfer Phenomena
  • 5.1.1 Giant Magnetoresistance: An Historical Point of View
  • 5.1.2 Tunnelling Magnetoresistance
  • 5.1.3 Magnetization Manipulation without Magnetic Fields
  • 5.1.4 Summary
  • 5.2 Examples of Synchrotron Radiation Contribution to Spintronics
  • 5.2.1 Voltage Control of Magnetism
  • 5.2.2 Spintronics with Pure Spin Current
  • 5.2.3 Current-Induced Magnetization Dynamics
  • 5.3 Conclusion
  • References
  • 6 p-Wave Superconductivity and d-Vector Representation
  • 6.1 Introduction
  • 6.2 Odd-Parity Pairing: BCS Wave Function and Order Parameter
  • 6.3 Vectors and Cayley-Klein Representation
  • 6.3.1 Position of the Problem
  • 6.3.2 Useful Formula for Pauli Matrices
  • 6.3.3 Rotation of a 3D Vector: Cayley-Klein Relation
  • 6.4 d-Vector Representation
  • 6.5 Behaviour under Rotations
  • 6.5.1 Rotation in Spin Space
  • 6.5.2 Rotation in Real Space
  • 6.5.3 Change of Quantization Axis: Application to ESP States.
  • 6.6 Some Uses of the d-Vector Representation
  • 6.6.1 Amplitude of the d-Vector
  • 6.6.2 Spin Direction
  • 6.6.3 Non-unitary States
  • 6.6.4 Orbital Moment
  • 6.6.5 Excitation Energy of Quasiparticles
  • 6.7 The Spin-Orbit Issue
  • 6.7.1 Spin-Orbit and the Superconducting Order Parameter
  • 6.7.2 Anisotropy of the Susceptibility for the Strong Spin-Orbit Case
  • 6.8 d d d d-vector Representation of Some Known (or Suspected) p-Wave Superconductors
  • 6.8.1 Phases of Superfluid 3He
  • 6.8.2 UPt3 and Sr2RuO4
  • 6.9 Ferromagnetic Superconductors
  • 6.9.1 ESP States
  • 6.9.2 Symmetries
  • 6.9.3 Microscopic Model
  • 6.10 UTe2
  • 6.11 Proofs and Exercise Solutions
  • 6.11.1 Proof of the Cayley-Klein Relation
  • 6.11.2 Conservation of the Scalar Product under Rotation with the Definition (6.11)
  • 6.11.3 Conservation of the Cross Product under Rotation with the Definition (6.11)
  • 6.11.4 Rotation of the d d d d-Vector of a Simple ``Up-Up'' State
  • 6.11.5 Equivalence of ESP Unitary States and Pure |Sz=0rangle States
  • References
  • Index.