|
|
|
|
LEADER |
08702nam a22004693i 4500 |
001 |
EBC6478284 |
003 |
MiAaPQ |
005 |
20231204023215.0 |
006 |
m o d | |
007 |
cr cnu|||||||| |
008 |
231204s2021 xx o ||||0 eng d |
020 |
|
|
|a 9783030562151
|q (electronic bk.)
|
020 |
|
|
|z 9783030562144
|
035 |
|
|
|a (MiAaPQ)EBC6478284
|
035 |
|
|
|a (Au-PeEL)EBL6478284
|
035 |
|
|
|a (OCoLC)1240211601
|
040 |
|
|
|a MiAaPQ
|b eng
|e rda
|e pn
|c MiAaPQ
|d MiAaPQ
|
050 |
|
4 |
|a QA76.9.I52
|
100 |
1 |
|
|a Özarslan, Evren.
|
245 |
1 |
0 |
|a Anisotropy Across Fields and Scales.
|
250 |
|
|
|a 1st ed.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing AG,
|c 2021.
|
264 |
|
4 |
|c {copy}2021.
|
300 |
|
|
|a 1 online resource (284 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Mathematics and Visualization Series
|
505 |
0 |
|
|a Intro -- Preface -- Contents -- Foundations -- Variance Measures for Symmetric Positive (Semi-) Definite Tensors in Two Dimensions -- 1 Introduction -- 1.1 Outline -- 2 Preliminaries -- 2.1 Tensor Notation and Representations -- 2.2 Invariants, Traces and Decompositions -- 3 Rabcd as a Quadratic Form on mathbbR3 -- 3.1 Representation of the Canonically Derived Parts of Rabcd -- 3.2 The Behaviour of Mij Under a Rotation of the Coordinate System in Va -- 4 The Equivalence Problem for Rabcd -- 4.1 Different Ways to Characterize the Equivalence of Rabcd and widetildeRabcd -- 5 Discussion -- References -- Degenerate Curve Bifurcations in 3D Linear Symmetric Tensor Fields -- 1 Introduction -- 2 Previous Work -- 3 Background on Tensors and Tensor Fields -- 3.1 Tensors -- 3.2 Tensor Field Topology -- 3.3 3D Linear Tensor Fields -- 4 Bifurcations -- 4.1 Degenerate Curve Removal and Generation -- 4.2 Degenerate Curve Reconnection -- 4.3 Transition Point Pair Cancellation and Generation -- 4.4 Transition Point Relocation -- 5 Conclusion -- References -- Continuous Histograms for Anisotropy of 2D Symmetric Piece-Wise Linear Tensor Fields -- 1 Introduction -- 2 Context and Related Work -- 2.1 Continuous Histograms -- 2.2 Notes on Tensor Field Interpolation -- 2.3 Contour Trees, a Topological Summary of Scalar Functions -- 3 Problem Statement and Solution Overview -- 4 Background and Notations -- 4.1 Second Order Symmetric Tensors and Anisotropy -- 4.2 Barycentric Coordinates and Piece-Wise Linear Interpolation -- 4.3 Bivariate Quadratic Functions and Their Critical Points -- 5 Anisotropy for 2D Piece-Wise Linear Tensor Fields -- 5.1 Field Normalization Using Coordinate Transformations -- 6 Subdivision in Monotonous Sub-triangles -- 7 Computation of the Histogram for ν -- 7.1 Implementation -- 8 Results -- 8.1 Synthetic Data -- 8.2 Simulation Data.
|
505 |
8 |
|
|a 8.3 Measurement Data -- 9 Conclusions -- References -- Image Processing and Visualization -- Tensor Approximation for Multidimensional and Multivariate Data -- 1 Introduction -- 1.1 Higher-Order Data Decompositions -- 1.2 TA Applications in Graphics and Visualization -- 1.3 Motivation and Contributions -- 2 Singular Value Decomposition -- 3 Tensor Approximation Notation and Definitions -- 3.1 General Notation -- 3.2 Computing with Tensors -- 3.3 Rank of a Tensor -- 4 Tensor Decompositions -- 4.1 Tucker Model -- 5 Tensor Rank Reduction -- 5.1 Rank-R and Rank-(R1, R2, …, RN) Approximations -- 5.2 Truncated Tensor Decomposition -- 6 Tucker Decomposition Algorithms -- 7 Tensor Reconstruction -- 7.1 Element-Wise Reconstruction -- 7.2 Optimized Tucker Reconstruction -- 8 Useful TA Properties for Scientific Visualization -- 8.1 Spatial Selectivity and Subsampling -- 8.2 Approximation and Rank Reduction -- 9 Application to Multivariate Data -- 9.1 Dataset -- 9.2 Vector Field Magnitude and Angle -- 9.3 Vorticity and Divergence -- 10 Conclusions -- References -- Fourth-Order Anisotropic Diffusion for Inpainting and Image Compression -- 1 Introduction -- 2 Background and Related Work -- 2.1 Diffusion-Based Inpainting -- 2.2 From Linear to Anisotropic Nonlinear Diffusion -- 2.3 From Second to Fourth Order Diffusion -- 2.4 Alternative Approaches to Image Compression -- 3 Method -- 3.1 Anisotropic Edge-Enhancing Fourth Order PDE -- 3.2 A Unifying Framework for Fourth-Order Diffusion -- 3.3 Discretization and Stability -- 4 Experimental Results -- 4.1 Reconstruction From a Sparse Set of Pixels -- 4.2 Scratch Removal -- 4.3 Effect of Diffusivity Function and Contrast Parameter -- 5 Conclusions -- References -- Uncertainty in the DTI Visualization Pipeline -- 1 Introduction -- 2 Background -- 2.1 Diffusion Tensor -- 2.2 Fiber Tracking -- 3 Sources of Uncertainty.
|
505 |
8 |
|
|a 3.1 Image Acquisition -- 3.2 Diffusion Tensor Calculation -- 3.3 Fiber Tracking -- 3.4 Visualization -- 4 Uncertainty Modeling -- 4.1 Analytical Methods -- 4.2 Stochastic Methods -- 5 Uncertainty Visualization -- 5.1 Local Uncertainty Visualization -- 5.2 Global Uncertainty Visualization -- 6 Conclusion -- References -- Challenges for Tractogram Filtering -- 1 Introduction -- 2 Approaches for Tractogram Filtering -- 2.1 Explainability of the Diffusion Signal -- 2.2 Inclusion and Exclusion ROIs -- 2.3 Streamline Geometry or Shape -- 2.4 Streamline Similarity and Clustering -- 2.5 Multiapproaches -- 3 Challenges and Perspective -- 4 Conclusion -- References -- Modeling Anisotropy -- Single Encoding Diffusion MRI: A Probe to Brain Anisotropy -- 1 Accessing Brain Anisotropy Using Diffusion MRI -- 1.1 Introduction -- 1.2 Anisotropy as Reflected by Water Motion -- 1.3 Structural Brain Anisotropy -- 1.4 Measuring Anisotropy Using Diffusion MRI -- 2 Diffusion MRI: Introduction to a Non-Invasive Imaging Technique -- 2.1 Diffusion MRI Acquisition Sequence -- 2.2 Mathematical Foundations -- 2.3 Acquisition Strategies -- 2.4 Difficulties -- 3 Quantifying Anisotropy via Signal Representation -- 3.1 Cumulant Expansion -- 3.2 Other Representations -- 3.3 Limitations -- 4 Biophysical Modeling to Measure Anisotropy -- 4.1 Multi-compartmental Model -- 4.2 Neurites as Sticks -- 4.3 Standard Model of Diffusion in Neural Tissue -- 4.4 Standard Model Parameter Estimation Using Constraints -- 4.5 Lemonade -- 5 Summary and Above -- References -- Conceptual Parallels Between Stochastic Geometry and Diffusion-Weighted MRI -- 1 Introduction -- 2 Specific Volumes and the Short-Time Limit -- 3 Stationarity and the Long-Time Limit -- 4 Directional Measures and the Strong-Gradient Limit -- 5 Perspectives -- References.
|
505 |
8 |
|
|a Magnetic Resonance Assessment of Effective Confinement Anisotropy with Orientationally-Averaged Single and Double Diffusion Encoding -- 1 Introduction -- 2 Double Diffusion Encoding at the Compartment Level -- 3 Double Diffusion Encoding: Powder Average -- 3.1 Axisymmetric Confinement -- 3.2 Insights from Two Dimensions -- 3.3 One-Dimensional Diffusion Under High Gradient: g-2 Scaling -- 4 Single Diffusion Encoding -- 4.1 Axisymmetry and the Power-Laws for Confined diffusion -- 5 Discussion -- 6 Conclusion -- References -- Riemann-DTI Geodesic Tractography Revisited -- 1 Introduction -- 2 Theory -- 3 Experiments -- 4 Conclusion and Discussion -- References -- Measuring Anisotropy -- Magnetic Resonance Imaging of T2- and Diffusion Anisotropy Using a Tiltable Receive Coil -- 1 Introduction -- 1.1 Background -- 1.2 Scope of This Work -- 2 Methods -- 2.1 Data Acquisition -- 2.2 MRI Signal Processing -- 2.3 Estimation -- 3 Results -- 4 Discussion -- 4.1 Incorporating Tiltable Coil in -diffusion correlation experiments -- 4.2 Origin of -Contrast and -Anisotropy in WM -- 4.3 Considerations in Data Processing -- 5 Conclusion -- References -- Anisotropy in the Human Placenta in Pregnancies Complicated by Fetal Growth Restriction -- 1 Introduction -- 1.1 Placental Microstructure -- 1.2 Placental MRI -- 2 Methods -- 2.1 Recruitment -- 3 Results -- 4 Discussion and Conclusion -- References -- Index.
|
588 |
|
|
|a Description based on publisher supplied metadata and other sources.
|
590 |
|
|
|a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Schultz, Thomas.
|
700 |
1 |
|
|a Zhang, Eugene.
|
700 |
1 |
|
|a Fuster, Andrea.
|
776 |
0 |
8 |
|i Print version:
|a Özarslan, Evren
|t Anisotropy Across Fields and Scales
|d Cham : Springer International Publishing AG,c2021
|z 9783030562144
|
797 |
2 |
|
|a ProQuest (Firm)
|
830 |
|
0 |
|a Mathematics and Visualization Series
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=6478284
|z Click to View
|