Genome Editing in Neurosciences.

Bibliographic Details
Main Author: Jaenisch, Rudolf.
Other Authors: Zhang, Feng., Gage, Fred.
Format: eBook
Language:English
Published: Cham : Springer International Publishing AG, 2017.
Edition:1st ed.
Series:Research and Perspectives in Neurosciences Series
Subjects:
Online Access:Click to View
LEADER 05386nam a22004453i 4500
001 EBC6422738
003 MiAaPQ
005 20231204023215.0
006 m o d |
007 cr cnu||||||||
008 231204s2017 xx o ||||0 eng d
020 |a 9783319601922  |q (electronic bk.) 
020 |z 9783319601915 
035 |a (MiAaPQ)EBC6422738 
035 |a (Au-PeEL)EBL6422738 
035 |a (OCoLC)1004664421 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a RB155-155.8 
082 0 |a 616.80442 
100 1 |a Jaenisch, Rudolf. 
245 1 0 |a Genome Editing in Neurosciences. 
250 |a 1st ed. 
264 1 |a Cham :  |b Springer International Publishing AG,  |c 2017. 
264 4 |c ©2017. 
300 |a 1 online resource (129 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Research and Perspectives in Neurosciences Series 
505 0 |a Intro -- Preface -- Contents -- List of Contributors -- In Vitro Modeling of Complex Neurological Diseases -- Introduction -- Induced Pluripotent Stem Cells to Model Complex Diseases -- Gene Editing to Generate Genetically Controlled Disease Models -- Functional Role of GWAS-Identified Risk Variants in Complex Disease -- Epigenomic Signatures to Prioritize GWAS-Identified Risk Variants -- Functional Analysis of Parkinsonś Disease-Associated Risk Variants -- Identification of Parkinsonś Disease-Associated Risk Variants in Brain-Specific Enhancer Elements -- Allele-Specific Gene Expression as a Robust Read-Out to Analyze Cis-Regulatory Effects -- Functional Analysis of Parkinsonś-Associated Risk Variants -- Mechanistic Study of Sporadic Diseases: Conclusions -- References -- Aquatic Model Organisms in Neurosciences: The Genome-Editing Revolution -- Introduction -- Zebrafish: With the CRiSPR-Cas9 System, Forward Genetic Screens Are Back Again -- Optimizing the Cripsr-Cas9 System in Transparent Marine Animals -- More and More Aquatic Model Organisms for Diversified Uses -- In Biomedical Research, Why and How Should We Use Aquatic Models to Study Diseases of the Nervous System? -- A Short Natural History of the Nervous System: Several Questions on Its Origin -- Conclusion -- References -- Genome-Wide Genetic Screening in the Mammalian CNS -- Introduction -- Genome-Wide Viral Library Preparation and Delivery -- Interpretation of Results -- Future Directions -- References -- CRISPR/Cas9-Mediated Knockin and Knockout in Zebrafish -- CRISPR/Cas9 and Gal4/UAS Combination for Cell-Specific Gene Inactivation -- Crispr/Cas9-Mediated Knockin Approaches in Zebrafish -- References -- Dissecting the Role of Synaptic Proteins with CRISPR -- Introduction -- Genome Editing Using CRISPR/Cas9 -- Practical Considerations for the Use of CRISPR/Cas9. 
505 8 |a The Use of CRISPR/Cas9 in Neurons: Proof of Concept -- Conclusions and Future Perspectives -- References -- Recurrently Breaking Genes in Neural Progenitors: Potential Roles of DNA Breaks in Neuronal Function, Degeneration and Cancer -- References -- Neuroscience Research Using Non-human Primate Models and Genome Editing -- Introduction -- Characteristics of the Common Marmoset -- Advantages of Using Common Marmosets for Biomedical Research -- Transgenic Techniques and Genome Editing Technology for Marmoset Research -- Future Perspectives -- References -- Multiscale Genome Engineering: Genome-Wide Screens and Targeted Approaches -- Introduction -- Top-Down Approaches Using Genome-Wide CRISPR Screens -- Bottom-Up Approaches Using Exome Sequencing in Autism -- References -- Using Genome Engineering to Understand Huntingtonś Disease -- Huntington ́Disease -- Gene Editing Enzymes -- Uses for Gene Editing to Understand Human Diseases -- Gene Editing In Vivo to Treat Genetic Diseases -- Conclusion -- References -- Therapeutic Gene Editing in Muscles and Muscle Stem Cells -- Duchenne Muscular Dystrophy -- Current Gene-Targeted Therapeutic Strategies for DMD -- Challenges for Therapeutic Exon Skipping and Microdystrophin Delivery Strategies -- Gene-Editing Approaches to Restore Dystrophin Function in DMD -- Remaining Challenges for Therapeutic Development of DMD-CRISPR -- Challenges of DMD-CRISPR Delivery -- Potential Immune Response to Restored Dystrophin Protein -- Pre-existing and Acquired Immunity to Cas9 -- Assessing Mutagenic Events at On-Target and Off-Target Sites -- Enabling HR for Precise Repair of Dmd -- Gene-Editing Therapy in Combination with AONs or Microdystrophin -- Possible Application of CRISPR-mediated gene editing Strategies in Other Diseases -- Conclusions and Perspective -- References. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
700 1 |a Zhang, Feng. 
700 1 |a Gage, Fred. 
776 0 8 |i Print version:  |a Jaenisch, Rudolf  |t Genome Editing in Neurosciences  |d Cham : Springer International Publishing AG,c2017  |z 9783319601915 
797 2 |a ProQuest (Firm) 
830 0 |a Research and Perspectives in Neurosciences Series 
856 4 0 |u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=6422738  |z Click to View