Handbook of Ocean Wave Energy.

Bibliographic Details
Main Author: Pecher, Arthur.
Other Authors: Kofoed, Jens Peter.
Format: eBook
Language:English
Published: Cham : Springer International Publishing AG, 2017.
Edition:1st ed.
Series:Ocean Engineering and Oceanography Series
Subjects:
Online Access:Click to View
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Abbreviations
  • Symbols
  • 1 Introduction
  • 1.1 Introduction
  • 1.2 The Successful Product Innovation
  • 1.3 Sketching WECs and Their Environment
  • 1.4 Rules of Thumb for Wave Energy
  • 1.4.1 The Essential Features of a WEC
  • 1.4.2 Economic Rules of Thumb
  • 1.4.3 WEC Design Rules of Thumb
  • 1.4.4 Power Take-Off Rules of Thumb
  • 1.4.5 Environmental Rules of Thumb
  • References
  • 2 The Wave Energy Sector
  • 2.1 Introduction
  • 2.2 Potential of Wave Energy
  • 2.3 Wave Energy Converters
  • 2.3.1 History
  • 2.3.2 Categorization of WEC's
  • 2.3.3 Examples of Various WEC Types
  • 2.3.3.1 Oscillating Water Column
  • 2.3.3.2 Wave Activated Bodies
  • 2.3.3.3 Overtopping Devices
  • 2.3.4 The Development of WECs
  • 2.4 Test Sites
  • References
  • 3 The Wave Energy Resource
  • 3.1 Introduction to Ocean Waves
  • 3.1.1 Origin of Ocean Waves
  • 3.1.2 Overview of the Global Wave Energy Resource
  • 3.2 Water Wave Mechanics
  • 3.2.1 Definition and Symbols
  • 3.2.2 Dispersion Relationship
  • 3.2.3 Water Particle Path and Wave Motions
  • 3.3 Characterisation of Ocean Waves and the Wave Climate
  • 3.3.1 Introduction
  • 3.3.2 Temporal, Directional and Spectral Characteristics of the Wave Climate
  • 3.3.3 Spectral Representation of Ocean Waves
  • 3.3.4 Characterization Parameters
  • 3.3.5 Challenges in Wave Climate Characterisation
  • 3.3.6 Coastal Processes
  • 3.3.6.1 Shoaling
  • 3.3.6.2 Refraction
  • 3.3.6.3 Diffraction
  • 3.3.6.4 Depth-Induced Wave Breaking
  • 3.3.6.5 Bottom Friction
  • 3.3.6.6 Wind Growth
  • 3.3.7 Case Study-Incident Wave Power
  • 3.4 Measurement of Ocean Waves
  • 3.4.1 Overview
  • 3.4.2 Surface-Following Buoy
  • 3.4.3 Sea-Bed Pressure Sensor
  • 3.4.4 Acoustic Current Profiler
  • 3.4.5 Land-Based and Satellite Radar
  • 3.5 Modelling of Ocean Waves
  • 3.5.1 Introduction
  • 3.5.2 General Spectral Wave Models.
  • 3.5.3 Third Generation Spectral Wave Models
  • 3.5.4 Grid Definition
  • References
  • 4 Techno-Economic Development of WECs
  • 4.1 Introduction
  • 4.1.1 Continuous Evaluation of the WEC Potential
  • 4.1.2 Overview of the Techno-Economic Development
  • 4.2 The WEC Development Stages
  • 4.3 Techno-Economic Development Evaluation
  • 4.3.1 The Technology Readiness and Performance Level
  • 4.3.2 The WEC Development Stages and the TRL Scale
  • 4.3.3 The TRL-TPL R&amp
  • D Matrix
  • 4.3.4 Uncertainty Related to the TRL-TPL Matrix
  • 4.3.5 Valuation of R&amp
  • D Companies
  • 4.4 Techno-Economic Development Strategies
  • 4.4.1 R&amp
  • D Strategy as TRL-TPL Trajectories
  • 4.4.2 Extreme Cases of Techno-Economic Development Strategy
  • 4.4.3 Efficient Techno-Economic Development
  • 4.5 Conclusion
  • 4.6 Overview of Some of the Leading WECs
  • References
  • 5 Economics of WECs
  • 5.1 Introduction
  • 5.2 Power Is Vanity-Energy Is Sanity
  • 5.3 Economic Decision Making
  • 5.3.1 Cash Flow Terminology
  • 5.3.2 Time Value of Money (and Energy)
  • 5.3.3 Economic Metrics
  • 5.3.4 Effect of Depreciation on Discounting
  • 5.3.5 Effect of Inflation on Discounting
  • 5.3.6 Setting the Discount Rate
  • 5.3.7 Economic Decision Making-Which Metric to Use?
  • 5.3.8 Expert Oversight and Independent Review
  • 5.4 Economic Analysis in Technology R&amp
  • D
  • 5.5 Techno-Economic Assessment and Optimisation
  • 5.6 WEC Cost-of-Energy Estimation Based on Offshore Wind Energy Farm Experience
  • 5.6.1 Introduction
  • 5.6.2 Definition of the Categories
  • 5.6.3 Wind Energy Project Case
  • 5.6.3.1 Introduction
  • 5.6.3.2 Categories Cost Breakdown
  • 5.6.3.3 Levelized Cost of Energy Estimation
  • 5.6.4 Wave Energy Case
  • 5.6.4.1 Introduction
  • 5.6.4.2 Category: Development and Consent
  • 5.6.4.3 Category: Wave Energy Converter
  • 5.6.4.4 Category: Balance of Plant.
  • 5.6.4.5 Category: Installation and Commissioning
  • 5.6.4.6 Category: Operation and Maintenance (OpEx)
  • 5.6.4.7 Overview and Levelized Cost of Energy Estimation
  • 5.6.5 Cost Reduction
  • 5.6.6 Revenue and Energy Yield
  • 5.7 Strategic Support Mechanisms
  • References
  • 6 Hydrodynamics of WECs
  • 6.1 Introduction
  • 6.1.1 Wave Energy Absorption is Wave Interference
  • 6.1.2 Hydrostatics: Buoyancy and Stability
  • 6.1.3 Hydrodynamic Forces and Body Motions
  • 6.1.3.1 Excitation and Radiation Forces-Added Mass and Radiation Resistance
  • 6.1.3.2 Machinery Forces
  • 6.1.3.3 Drag Forces
  • 6.1.3.4 Wave Drift, Current and Mooring Forces
  • 6.1.4 Resonance
  • 6.1.5 Oscillating Water Columns-Comments on Resonance Properties and Modelling
  • 6.1.6 Hydrodynamic Design of a Wave Energy Converter
  • 6.1.6.1 Size and Shape
  • 6.1.6.2 Heave, Surge or Pitch?
  • 6.1.6.3 Some Examples
  • 6.1.6.4 Comments on Alternative Principles of Power Extraction
  • 6.1.7 Power Estimates and Limits to the Absorbed Power
  • 6.1.8 Controlled Motion and Maximisation of Output Power
  • References
  • 7 Mooring Design for WECs
  • 7.1 Introduction
  • 7.1.1 General
  • 7.1.2 Mooring Design Development Overview
  • 7.1.3 Wave-Induced Forces on Structures
  • 7.1.4 Motions of a Moored Device in Waves
  • 7.2 Metocean Conditions
  • 7.2.1 Combinations of Environmental Conditions
  • 7.2.2 Design Wave Conditions
  • 7.2.3 Environmental Data at DanWEC
  • 7.2.4 Example Design Conditions
  • 7.3 Estimation of Environmental Forces
  • 7.3.1 Overview and Example Floater Properties
  • 7.3.2 Mean Wind and Current Forces
  • 7.3.2.1 Introduction
  • 7.3.2.2 Wind Force on the Sample Floater
  • 7.3.2.3 Current Force on the Sample Floater
  • 7.3.3 Wave Forces
  • 7.3.3.1 Mean Wave Drift Force
  • Mean Wave Drift Force in Regular Waves, Simplified Approach
  • Mean Wave Drift Force in Irregular Waves.
  • 7.3.3.2 First-Order Wave Forces
  • Overview
  • Wave Forces on "Small" Bodies D  lessthan  L/4
  • Wave Forces in a Regular Wave (Small Body)
  • Wave Forces in Irregular Waves (Small Body)
  • Wave Forces on "Large" Bodies
  • Overview
  • Wave Forces in Irregular Waves (Large Body)
  • 7.3.4 Summary of Environmental Forces on Buoy
  • 7.4 Mooring System Static Properties
  • 7.4.1 Example
  • 7.4.2 Catenary Equations
  • 7.4.3 Mean Excursion
  • 7.5 Alternative Design Procedures
  • 7.5.1 Quasi-Static Design
  • 7.5.1.1 Quasi-Static Design Procedure
  • 7.5.1.2 Safety Factors
  • First Design Loop
  • Second Design Loop
  • 7.5.2 Dynamic Design
  • 7.5.2.1 Dynamic Design Using Uncoupled Mooring Cable Dynamics
  • 7.5.2.2 Coupled Analysis
  • 7.5.2.3 Coupled Analyses with Potential or CFD Simulations
  • 7.5.3 Response-Based Analysis
  • 7.6 Response Motion of the Moored Structure
  • 7.6.1 Equation of Motion
  • 7.6.2 Free Vibration of a Floating Buoy in Surge
  • 7.6.3 Response to Harmonic Forces
  • 7.6.4 Response Motion in Irregular Waves
  • 7.6.4.1 Morison Mass Approach
  • 7.6.4.2 Diffraction Force Approach
  • 7.6.5 Equivalent Linearized Drag Damping
  • 7.6.6 Second-Order Slowly Varying Motion
  • 7.6.7 Wave Drift Damping
  • 7.6.8 Combined Maximum Excursions
  • 7.7 Conclusions
  • Acknowledgments
  • References
  • 8 Power Take-Off Systems for WECs
  • 8.1 Introduction, Importance and Challenges
  • 8.2 Types of Power Take-Off System
  • 8.2.1 Overview
  • 8.2.2 Air Turbines
  • 8.2.3 Hydraulic Converters
  • 8.2.4 Hydro Turbines
  • 8.2.5 Direct Mechanical Drive Systems
  • 8.2.6 Direct Electrical Drive Systems
  • 8.2.7 Alternative PTO Systems
  • 8.3 Control Strategy of Power Take-Off System
  • 8.3.1 Introduction
  • 8.3.2 Types of Control Strategy
  • 8.3.2.1 Passive Loading Control
  • 8.3.2.2 Latching Control
  • 8.3.2.3 Reactive Loading Control
  • 8.4 Conclusion
  • References.
  • 9 Experimental Testing and Evaluation of WECs
  • 9.1 Overview
  • 9.2 Tank Testing
  • 9.2.1 Overview
  • 9.2.2 Representative Sea States
  • 9.2.2.1 Operational Sea States
  • 9.2.2.2 Design Sea States
  • 9.2.3 Hydrodynamic Response
  • 9.2.3.1 Natural Period
  • 9.2.3.2 Response Amplitude Operators
  • 9.2.4 Power Performance Evaluation
  • 9.2.4.1 Introduction
  • 9.2.4.2 Power Performance Estimation Based on Sea States
  • 9.2.4.3 Power Performance Estimation Based on the Scatter Diagram
  • 9.2.4.4 Testing Procedure for Power Performance Analysis
  • 9.2.5 Scaling
  • 9.2.5.1 Defining the Scaling Ratio
  • 9.2.5.2 Scaling Law
  • 9.2.5.3 Optimising the Scaling Ratio
  • 9.2.6 Structural and Mooring Loads
  • 9.2.6.1 Introduction
  • 9.2.6.2 Mooring Forces
  • 9.2.6.3 Structural Design and PTO Loads
  • 9.2.7 Parametric Study
  • 9.2.7.1 Physical Alterations to the Model
  • 9.2.7.2 Modification of Wave Parameters
  • 9.3 Sea Trials
  • 9.3.1 Introduction
  • 9.3.2 Performance Assessment of WECs Based on Sea Trials
  • 9.3.2.1 Introduction
  • 9.3.2.2 Preparing the Environmental and Performance Data
  • 9.3.2.3 Scaling of the Performance Data
  • 9.3.2.4 Categorising the Data
  • 9.3.2.5 Complementing the Performance Data
  • 9.3.2.6 Estimating the MAEP
  • References
  • 10 Wave-to-Wire Modelling of WECs
  • 10.1 Introduction
  • 10.2 Wave-to-Wire Models
  • 10.2.1 Equation of Motion
  • 10.2.2 Excitation Force
  • 10.2.3 Hydrostatic Force
  • 10.2.4 Mooring Loads
  • 10.2.5 Radiation Force
  • 10.2.6 PTO Force
  • 10.2.7 End Stops Mechanism
  • 10.3 Benchmark Analysis
  • 10.4 Radiation/Diffraction Codes
  • 10.5 Conclusion
  • References
  • 11 Erratum to: Handbook of Ocean Wave Energy
  • Erratum to:&amp
  • #6
  • A. Pecher and J.P. Kofoed (eds.), Handbook of Ocean Wave Energy, Ocean Engineering &amp
  • Oceanography 7, DOI 10.1007/978-3-319-39889-1.