Linear Selection Indices in Modern Plant Breeding.

Bibliographic Details
Main Author: Céron-Rojas, J. Jesus.
Other Authors: Crossa, José., Gianola, Daniel.
Format: eBook
Language:English
Published: Cham : Springer International Publishing AG, 2018.
Edition:1st ed.
Subjects:
Online Access:Click to View
Table of Contents:
  • Intro
  • Foreword
  • References
  • Preface
  • References
  • Acknowledgments
  • Contents
  • Chapter 1: General Introduction
  • 1.1 Standard Linear Selection Indices
  • 1.1.1 Linear Phenotypic Selection Indices
  • 1.1.2 Linear Marker Selection Indices
  • 1.1.3 Linear Genomic Selection Indices
  • 1.2 Eigen Selection Index Methods
  • 1.2.1 Linear Phenotypic Eigen Selection Index Method
  • 1.2.2 Linear Marker and Genomic Eigen Selection Index Methods
  • 1.3 Multistage Linear Selection Indices
  • 1.4 Stochastic Simulation of Four Linear Phenotypic Selection Indices
  • 1.5 RIndSel: Selection Indices with R
  • 1.6 The Lagrange Multiplier Method
  • References
  • Chapter 2: The Linear Phenotypic Selection Index Theory
  • 2.1 Bases for Construction of the Linear Phenotypic Selection Index
  • 2.2 The Net Genetic Merit and the LPSI
  • 2.3 Fundamental Parameters of the LPSI
  • 2.3.1 The LPSI Selection Response
  • 2.3.2 The Maximized Selection Response
  • 2.3.3 The LPSI Expected Genetic Gain Per Trait
  • 2.3.4 Heritability of the LPSI
  • 2.4 Statistical LPSI Properties
  • 2.5 Particular Cases of the LPSI
  • 2.5.1 The Base LPSI
  • 2.5.2 The LPSI for Independent Traits
  • 2.6 Criteria for Comparing LPSI Efficiency
  • 2.7 Estimating Matrices G and P
  • 2.8 Numerical Examples
  • 2.8.1 Simulated Data
  • 2.8.2 Estimated Matrices, LPSI, and Its Parameters
  • 2.8.3 LPSI Efficiency Versus Base Index Efficiency
  • 2.9 The LPSI and Its Relationship with the Quadratic Phenotypic Selection Index
  • 2.9.1 The Quadratic Nonlinear Net Genetic Merit
  • 2.9.2 The Quadratic Index
  • 2.9.3 The Vector and the Matrix of Coefficients of the Quadratic Index
  • 2.9.4 The Accuracy and Maximized Selection Response of the Quadratic Index
  • References
  • Chapter 3: Constrained Linear Phenotypic Selection Indices
  • 3.1 The Null Restricted Linear Phenotypic Selection Index.
  • 3.1.1 The Maximized RLPSI Parameters
  • 3.1.2 Statistical Properties of the RLPSI
  • 3.1.3 The RLPSI Matrix of Restrictions
  • 3.1.4 Numerical Examples
  • 3.2 The Predetermined Proportional Gains Linear Phenotypic Selection Index
  • 3.2.1 The Maximized PPG-LPSI Parameters
  • 3.2.2 Statistical Properties of the PPG-LPSI
  • 3.2.3 There Is Only One Optimal PPG-LGSI
  • 3.2.4 Numerical Examples
  • 3.3 The Desired Gains Linear Phenotypic Selection Index
  • 3.4 Applicability of the LPSI, RLPSI, and PPG-LPSI
  • References
  • Chapter 4: Linear Marker and Genome-Wide Selection Indices
  • 4.1 The Linear Marker Selection Index
  • 4.1.1 Basic Conditions for Constructing the LMSI
  • 4.1.2 The LMSI Parameters
  • 4.1.3 The Maximized LMSI Parameters
  • 4.1.4 The LMSI for One Trait
  • 4.1.5 Efficiency of LMSI Versus LPSI Efficiency for One Trait
  • 4.1.6 Statistical LMSI Properties
  • 4.2 The Genome-Wide Linear Selection Index
  • 4.2.1 The GW-LMSI Parameters
  • 4.2.2 Relationship Between the GW-LMSI and the LPSI
  • 4.2.3 Statistical Properties of GW-LMSI
  • 4.3 Estimating the LMSI Parameters
  • 4.3.1 Estimating the Marker Score
  • 4.3.2 Estimating the Variance of the Marker Score
  • 4.3.3 Estimating LMSI Selection Response and Efficiency
  • 4.3.4 Estimating the Variance of the Marker Score in the Multi-Trait Case
  • 4.4 Estimating the GW-LMSI Parameters in the Asymptotic Context
  • 4.5 Comparing LMSI Versus LPSI and GW-LMSI Efficiency
  • References
  • Chapter 5: Linear Genomic Selection Indices
  • 5.1 The Linear Genomic Selection Index
  • 5.1.1 Basic Conditions for Constructing the LGSI
  • 5.1.2 Genomic Breeding Values and Marker Effects
  • 5.1.3 The LGSI and Its Parameters
  • 5.1.4 Maximizing LGSI Parameters
  • 5.1.5 Relationship Between the LGSI and LPSI Selection Responses
  • 5.1.6 Statistical LGSI Properties.
  • 5.1.7 Genomic Covariance Matrix in the Training and Testing Population
  • 5.1.8 Numerical Examples
  • 5.2 The Combined Linear Genomic Selection Index
  • 5.2.1 The CLGSI Parameters
  • 5.2.2 Relationship Between the CLGSI and the LGSI
  • 5.2.3 Statistical Properties of the CLGSI
  • 5.2.4 Estimating the CLGSI Parameters
  • 5.2.5 LGSI and CLGSI Efficiency Vs LMSI, GW-LMSI and LPSI Efficiency
  • References
  • Chapter 6: Constrained Linear Genomic Selection Indices
  • 6.1 The Restricted Linear Genomic Selection Index
  • 6.1.1 The Maximized RLGSI Parameters
  • 6.1.2 Statistical Properties of RLGSI
  • 6.1.3 Numerical Examples
  • 6.2 The Predetermined Proportional Gain Linear Genomic Selection Index
  • 6.2.1 Objective of the PPG-LGSI
  • 6.2.2 The Maximized PPG-LGSI Parameters
  • 6.2.3 Statistical Properties of the PPG-LGSI
  • 6.2.4 Numerical Example
  • 6.3 The Combined Restricted Linear Genomic Selection Index
  • 6.3.1 The Maximized CRLGSI Parameters
  • 6.3.2 Numerical Examples
  • 6.4 The Combined Predetermined Proportional Gains Linear Genomic Selection Index
  • 6.4.1 The Maximized CPPG-LGSI Parameters
  • 6.4.2 Numerical Examples
  • References
  • Chapter 7: Linear Phenotypic Eigen Selection Index Methods
  • 7.1 The Linear Phenotypic Eigen Selection Index Method
  • 7.1.1 The ESIM Parameters
  • 7.1.2 Statistical ESIM Properties
  • 7.1.3 The ESIM and the Canonical Correlation Theory
  • 7.1.4 Estimated ESIM Parameters and Their Sampling Properties
  • 7.1.5 Numerical Examples
  • 7.2 The Linear Phenotypic Restricted Eigen Selection Index Method
  • 7.2.1 The RESIM Parameters
  • 7.2.2 Estimating the RESIM Parameters
  • 7.2.3 Numerical Examples
  • 7.3 The Linear Phenotypic Predetermined Proportional Gain Eigen Selection Index Method
  • 7.3.1 The PPG-ESIM Parameters
  • 7.3.2 Estimating PPG-ESIM Parameters
  • 7.3.3 Numerical Examples
  • References.
  • Chapter 8: Linear Molecular and Genomic Eigen Selection Index Methods
  • 8.1 The Molecular Eigen Selection Index Method
  • 8.1.1 The MESIM Parameters
  • 8.1.2 Estimating MESIM Parameters
  • 8.1.3 Numerical Examples
  • 8.2 The Linear Genomic Eigen Selection Index Method
  • 8.2.1 The GESIM Parameters
  • 8.2.2 Numerical Examples
  • 8.3 The Genome-Wide Linear Eigen Selection Index Method
  • 8.3.1 The GW-ESIM Parameters
  • 8.3.2 Estimating GW-ESIM Parameters
  • 8.3.3 Numerical Examples
  • 8.4 The Restricted Linear Genomic Eigen Selection Index Method
  • 8.4.1 The RGESIM Parameters
  • 8.4.2 Estimating RGESIM Parameters
  • 8.4.3 Numerical Examples
  • 8.5 The Predetermined Proportional Gain Linear Genomic Eigen Selection Index Method
  • 8.5.1 The PPG-GESIM Parameters
  • 8.5.2 Numerical Examples
  • References
  • Chapter 9: Multistage Linear Selection Indices
  • 9.1 Multistage Linear Phenotypic Selection Index
  • 9.1.1 The MLPSI Parameters for Two Stages
  • 9.1.2 The Selection Intensities
  • 9.1.3 Numerical Example
  • 9.2 The Multistage Restricted Linear Phenotypic Selection Index
  • 9.2.1 The MRLPSI Parameters for Two Stages
  • 9.2.2 Numerical Examples
  • 9.3 The Multistage Predetermined Proportional Gain Linear Phenotypic Selection Index
  • 9.3.1 The MPPG-LPSI Parameters
  • 9.3.2 Numerical Examples
  • 9.4 The Multistage Linear Genomic Selection Index
  • 9.4.1 The MLGSI Parameters
  • 9.4.2 Estimating the Genomic Covariance Matrix
  • 9.4.3 Numerical Examples
  • 9.5 The Multistage Restricted Linear Genomic Selection Index (MRLGSI)
  • 9.5.1 The MRLGSI Parameters
  • 9.5.2 Numerical Examples
  • 9.6 The Multistage Predetermined Proportional Gain Linear Genomic Selection Index
  • 9.6.1 The OMPPG-LGSI Parameters
  • 9.6.2 Numerical Examples
  • References
  • Chapter 10: Stochastic Simulation of Four Linear Phenotypic Selection Indices
  • 10.1 Stochastic Simulation.
  • 10.1.1 Breeding Design
  • 10.1.2 Simulating Quantitative Traits
  • 10.1.3 Simulated Scenarios
  • 10.1.4 Inferences
  • 10.2 Results
  • 10.2.1 Realized Genetic Gains
  • 10.2.2 Genetic Variances
  • 10.2.3 Selection Accuracy
  • References
  • Chapter 11: RIndSel: Selection Indices with R
  • 11.1 Background
  • 11.2 Requirements, Installation, and Opening
  • 11.3 First Module: Data Reading and Helping
  • 11.4 Second Module: Capturing Parameters to Run
  • 11.5 Selection Index
  • 11.6 Experimental Design
  • 11.7 Variable Selection
  • 11.8 Response Variables
  • 11.9 Molecular Selection Indices
  • 11.10 How to Use RIndSel
  • 11.11 RIndSel Output
  • References.