Nanoinformatics.

Bibliographic Details
Main Author: Tanaka, Isao.
Format: eBook
Language:English
Published: Singapore : Springer Singapore Pte. Limited, 2018.
Edition:1st ed.
Subjects:
Online Access:Click to View
Table of Contents:
  • Intro
  • Preface
  • Contents
  • Materials Informatics
  • 1 Descriptors for Machine Learning of Materials Data
  • 1.1 Introduction
  • 1.2 Compound Descriptors
  • 1.3 Elemental Representations
  • 1.4 Structural Representations
  • 1.5 Machine Learning of DFT Cohesive Energy
  • 1.6 Construction of MLIP for Elemental Metals
  • 1.7 Discovery of Low Lattice Thermal Conductivity Materials
  • 1.8 Recommender System Approach for Materials Discovery
  • References
  • 2 Potential Energy Surface Mapping of Charge Carriers in Ionic Conductors Based on a Gaussian Process Model
  • Abstract
  • 2.1 Introduction
  • 2.2 Problem Setup
  • 2.2.1 Entire Proton PES in BaZrO3
  • 2.2.2 Problem Statement
  • 2.3 GP-Based Selective Sampling Procedure
  • 2.3.1 Gaussian Process Models
  • 2.3.2 Selection Criterion
  • 2.3.3 PE Threshold
  • 2.3.4 Termination Criterion
  • 2.4 Results of Selective Sampling
  • 2.4.1 Low-PE Region Identification
  • 2.4.2 Low-FN Region Identification
  • 2.4.3 Practical Issues
  • 2.5 Conclusions
  • Acknowledgements
  • References
  • 3 Machine Learning Predictions of Factors Affecting the Activity of Heterogeneous Metal Catalysts
  • Abstract
  • 3.1 Introduction
  • 3.2 The d-Band Center: A Widely Accepted Indicator Explaining Activity Trends in Metal Catalysts
  • 3.3 Prediction of the d-Band Center Values for Mono- and Bimetallic Systems by Machine Learning
  • 3.3.1 Data-Driven Prediction of d-Band Center Values by Machine Learning Methods
  • 3.3.2 Datasets and Descriptors
  • 3.3.3 Monte Carlo Cross-Validation for Assessing the Prediction Accuracies of ML Models
  • 3.3.4 Machine Learning Methods and Hyperparameter Selection
  • 3.3.5 Screening and Evaluation of Predictive ML Methods
  • 3.3.6 The Importance of Descriptors to GBR Predictions
  • 3.3.7 Model Estimations Using Different Test/Training Splits
  • 3.4 Conclusion and Future Prospects.
  • Acknowledgements
  • References
  • 4 Machine Learning-Based Experimental Design in Materials Science
  • 4.1 Introduction
  • 4.2 Bayesian Optimization
  • 4.2.1 Method
  • 4.2.2 COMBO: Bayesian Optimization Package
  • 4.2.3 Designing Phonon Transport Nanostructures
  • 4.3 Monte Carlo Tree Search
  • 4.3.1 Method
  • 4.3.2 MDTS: A Python Package for MCTS
  • 4.3.3 Discussion
  • 4.4 Concluding Remarks
  • References
  • 5 Persistent Homology and Materials Informatics
  • 5.1 Introduction
  • 5.2 Mathematical Background
  • 5.2.1 Homology
  • 5.2.2 From Point Sets to Simplicial Complexes
  • 5.2.3 Persistent Homology
  • 5.2.4 Computation
  • 5.2.5 Digital Images
  • 5.3 Materials TDA
  • 5.3.1 Silica Glass
  • 5.3.2 Grain Packing
  • 5.3.3 Craze Formation of Polymer
  • 5.4 Discussions
  • References
  • 6 Polyhedron and Polychoron Codes for Describing Atomic Arrangements
  • Abstract
  • 6.1 Introduction
  • 6.2 Polyhedron Code
  • 6.2.1 Our Way of Viewing a Polyhedron
  • 6.2.2 Decoding Simple Polyhedra
  • 6.2.2.1 How to Recover a 34443-Polyhedron
  • 6.2.2.2 Polyhedron Codeword
  • 6.2.2.3 Algorithm for Recovering the Original Polyhedron from {\bi p}_{3}
  • 6.2.3 Encoding Simple Polyhedra
  • 6.2.3.1 Schlegel Diagram
  • 6.2.3.2 Polygon-Sequence Codeword
  • 6.2.3.3 Outline of How to Generate {\bi sp}
  • 6.2.3.4 Plot
  • 6.2.3.5 How to Generate {\bi tsp}^{\left( 0 \right)}
  • 6.2.3.6 How to Generate {\bi sp}
  • 6.2.3.7 Lexicographical Number of {\bi p}_{3}
  • 6.2.3.8 Solving the Problem of Voronoi Index
  • 6.2.4 Non-simple Polyhedron
  • 6.2.4.1 Cut-and-Dot Method
  • 6.2.4.2 Using Duality
  • 6.2.5 Relation Between an Atomic Arrangement and a Voronoi Polyhedron
  • 6.3 Polychoron Code
  • 6.3.1 Our Way of Viewing a Polychoron
  • 6.3.2 1-Simple Polychoron
  • 6.3.3 Polychoron Codeword
  • 6.3.4 How to Generate {\bi ps}_{3}
  • 6.3.5 How to Generate {\bi tfp}^{\left( 0 \right)}.
  • 6.3.6 How to Recover a Polychoron from {\bi ps}_{3} \semicolon {\bi tsp}^{\left( 0 \right)}
  • 6.3.7 How to Generate \bi fp
  • 6.3.8 Lexicographical Number of {\bi p}_{4}
  • 6.3.9 Non-1-Simple Polychora
  • 6.3.10 Ridge-Sequence Codeword
  • 6.3.11 Relation Between a Local Atomic Arrangement and an Assemblage of Voronoi Polyhedra
  • 6.4 Summary
  • References
  • Nanoscale Analyses and Informatics
  • 7 Topological Data Analysis for the Characterization of Atomic Scale Morphology from Atom Probe Tomography Images
  • Abstract
  • 7.1 Introduction
  • 7.1.1 Atom Probe Tomography Data and Analysis
  • 7.1.2 Characteristics of Geometric-Based Data Analysis Methods
  • 7.2 Persistent Homology
  • 7.3 Voxel Size Determination: Identification of Interfaces
  • 7.4 Topological Analysis for Defining Morphology of Precipitates
  • 7.5 Spatial Uncertainty in Isosurfaces
  • 7.6 Summary
  • Acknowledgements
  • References
  • 8 Atomic-Scale Nanostructures by Advanced Electron Microscopy and Informatics
  • Abstract
  • 8.1 Atomic Structures of Interfaces
  • 8.2 Informatics Approach for Interfaces
  • 8.2.1 Virtual Screening
  • 8.2.2 Bayesian Optimization (Kriging) [15]
  • 8.2.3 Kriging Method for Oxide Interfaces [16]
  • 8.3 Microscopic Approach for Interfaces
  • 8.3.1 Scanning Transmission Electron Microscopy (STEM)
  • 8.3.2 Interface Structures Using Aberration-Corrected STEM
  • 8.3.2.1 Solute Segregation Behavior of a ∑3 Grain Boundary in Yttria Stabilized Zirconia [39]
  • 8.3.2.2 Dopant Segregation Behavior in a Metal/Ceramic Interface [40]
  • Acknowledgements
  • References
  • 9 High Spatial Resolution Hyperspectral Imaging with Machine-Learning Techniques
  • Abstract
  • 9.1 Introduction
  • 9.2 Methodology
  • 9.2.1 Mathematical Formulation of HSI Data
  • 9.2.2 Non-negative Matrix Factorization with a Gaussian Noise Model.
  • 9.2.3 Optimization Algorithms with Soft Spatial Orthogonal Constraint
  • 9.2.4 Probabilistic View of a NMF Model with an Automatic Relevance Determination Prior
  • 9.2.5 Optimization Algorithm for C with Both ARD and Spatial Orthogonal Constraint
  • 9.3 Application
  • 9.3.1 Experimental Procedures
  • 9.3.2 Spatial Orthogonal Constraint on STEM-EELS Data
  • 9.3.2.1 XSTEM-EELS Data from a Silicon Device
  • 9.3.2.2 Atomic Resolution STEM-EELS of Mn3O4
  • 9.3.3 Results of Optimizing the Number of Components by ARD-NMF
  • 9.3.3.1 STEM-EDX Data
  • 9.3.3.2 XSTEM-EELS Data from a Silicon Device
  • 9.3.3.3 Atomic Resolution STEM-EELS of Mn3O4
  • 9.4 Discussion
  • 9.5 Summary
  • Acknowledgements
  • References
  • Materials Developments
  • 10 Fabrication, Characterization, and Modulation of Functional Nanolayers
  • Abstract
  • 10.1 Epitaxial Growth and Characterization of Functional Nanolayers
  • 10.2 Pulsed Laser Deposition
  • 10.3 Reactive Solid-Phase Epitaxy
  • 10.3.1 Na≈2/3MnO2 Epitaxial Film
  • 10.3.2 Li4Ti5O12 Epitaxial Film
  • 10.3.3 KFe2As2 Epitaxial Film
  • 10.3.4 (Sn, Pb)Se Epitaxial Film
  • 10.4 Modulation of Functional Nanolayers
  • 10.4.1 Utilizing Antiferromagnetic Insulator/Ferromagnetic Metal Conversion in SrCoO2.5+δ [67]
  • 10.4.2 Utilizing a Colorless Transparent Insulator/Dark Blue Metal Conversion in HxWO3 [68]
  • Acknowledgements
  • References
  • 11 Grain Boundary Engineering of Alumina Ceramics
  • Abstract
  • 11.1 Introduction
  • 11.2 Experimental Procedures
  • 11.2.1 Oxygen Permeability Measurements
  • 11.2.2 Determination of Oxygen GB Diffusion Coefficients for Each GB
  • 11.3 Results and Discussion
  • 11.3.1 Oxygen Permeation
  • 11.3.2 GB Diffusion Under Oxygen Potential Gradients
  • 11.3.3 Design of Oxygen Shielding Capability and Structural Stability
  • 11.3.4 Mass-Transfer in Alumina Scale
  • 11.4 Conclusions
  • Acknowledgements.
  • References
  • 12 Structural Relaxation of Oxide Compounds from the High-Pressure Phase
  • Abstract
  • 12.1 General
  • 12.2 Phase Transition from the Perovskite Structure to the Lithium Niobate Structure
  • 12.2.1 Crystal Structure Relationship Among Lithium Niobate, Perovskite, and Ilmenite Phases
  • 12.2.2 Perovskite Tolerance Factor
  • 12.2.3 Structure Stability from a Computational Viewpoint
  • 12.3 Amorphization from Cubic and Hexagonal Silicate Perovskites
  • 12.3.1 Phase Transition Sequence of Silicate Perovskites
  • 12.3.2 Crystal Structures of Hexagonal Perovskite and Structural Relation with Cubic Perovskite
  • 12.3.3 Phase Diagrams: Experiments and Ab Initio Calculations
  • 12.3.4 Amorphization Under Decompression at Room Temperature
  • 12.4 Relaxation Structures from the High-Pressure Phases of Sesquioxides
  • 12.4.1 Rh2O3(II) Structure Reverting to the Corundum Structure in Group 13 Sesquioxides
  • 12.4.2 A-RES Structure of Y2O3 Reverting to the B-RES Structure
  • 12.5 Concluding Remarks
  • Acknowledgements
  • References
  • 13 Synthesis and Structures of Novel Solid-State Electrolytes
  • Abstract
  • 13.1 Novel Solid-State Electrolytes
  • 13.2 Lithium Ion Conductors
  • 13.2.1 Novel Lithium Ion-Conducting Perovskite Oxides [15]
  • 13.2.2 M-Doped LiScO2 (M = Zr, Nb, Ta) [21] as New Lithium Ion Conductors
  • 13.3 Development of Hydride Ion Conductors
  • 13.3.1 Hydride-Conducting Oxyhydrides La2-X-YSrx+YH1-X+YO3-Y
  • 13.3.2 Hydride Ion Conductivity of La2-X-YSrx+YH1-X+YO3-Y
  • 13.3.3 Development of Electrochemical Devices Based on Hydride Ion Conduction
  • 13.3.4 Ambient-Pressure Synthesis of H
  • Conductive Oxyhydrides
  • 13.4 Concluding Remarks
  • Acknowledgements
  • References.