Entity-Oriented Search.
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Cham :
Springer International Publishing AG,
2018.
|
Edition: | 1st ed. |
Series: | The Information Retrieval Series
|
Subjects: | |
Online Access: | Click to View |
Table of Contents:
- Intro
- Preface
- Website
- Contents
- Acronyms
- Notation
- 1 Introduction
- 1.1 What Is an Entity?
- 1.1.1 Named Entities vs. Concepts
- 1.1.2 Properties of Entities
- 1.1.3 Representing Properties of Entities
- 1.2 A Brief Historical Outlook
- 1.2.1 Information Retrieval
- 1.2.2 Databases
- 1.2.3 Natural Language Processing
- 1.2.4 Semantic Web
- 1.3 Entity-Oriented Search
- 1.3.1 A Bird's-Eye View
- 1.3.1.1 Users and Information Needs
- 1.3.1.2 Search Engine
- 1.3.1.3 Data
- 1.3.2 Tasks and Challenges
- 1.3.2.1 Entities as the Unit of Retrieval
- 1.3.2.2 Entities for Knowledge Representation
- 1.3.2.3 Entities for an Enhanced User Experience
- 1.3.3 Entity-Oriented vs. Semantic Search
- 1.3.4 Application Areas
- 1.4 About the Book
- 1.4.1 Focus
- 1.4.2 Audience and Prerequisites
- 1.4.3 Organization
- 1.4.4 Terminology and Notation
- References
- 2 Meet the Data
- 2.1 The Web
- 2.1.1 Datasets and Resources
- 2.2 Wikipedia
- 2.2.1 The Anatomy of a Wikipedia Article
- 2.2.1.1 Title
- 2.2.1.2 Infobox
- 2.2.1.3 Introductory Text
- 2.2.2 Links
- 2.2.3 Special-Purpose Pages
- 2.2.3.1 Redirect Pages
- 2.2.3.2 Disambiguation Pages
- 2.2.4 Categories, Lists, and Navigation Templates
- 2.2.4.1 Categories
- 2.2.4.2 Lists
- 2.2.4.3 Navigation Templates
- 2.2.5 Resources
- 2.3 Knowledge Bases
- 2.3.1 A Knowledge Base Primer
- 2.3.1.1 Knowledge Bases vs. Ontologies
- 2.3.1.2 RDF
- 2.3.2 DBpedia
- 2.3.2.1 Ontology
- 2.3.2.2 Extraction
- 2.3.2.3 Datasets and Resources
- 2.3.3 YAGO
- 2.3.3.1 Taxonomy
- 2.3.3.2 Extensions
- 2.3.3.3 Resources
- 2.3.4 Freebase
- 2.3.5 Wikidata
- 2.3.6 The Web of Data
- 2.3.6.1 Datasets and Resources
- 2.3.7 Standards and Resources
- 2.4 Summary
- References
- Part I Entity Ranking
- 3 Term-Based Models for Entity Ranking
- 3.1 The Ad Hoc Entity Retrieval Task.
- 3.2 Constructing Term-Based Entity Representations
- 3.2.1 Representations from Unstructured Document Corpora
- 3.2.1.1 Document-Level Annotations
- 3.2.1.2 Mention-Level Annotations
- 3.2.2 Representations from Semi-structured Documents
- 3.2.3 Representations from Structured Knowledge Bases
- 3.2.3.1 Predicate Folding
- 3.2.3.2 From Triples to Text
- 3.2.3.3 Multiple Knowledge Bases
- 3.3 Ranking Term-Based Entity Representations
- 3.3.1 Unstructured Retrieval Models
- 3.3.1.1 Language Models
- 3.3.1.2 BM25
- 3.3.1.3 Sequential Dependence Models
- 3.3.2 Fielded Retrieval Models
- 3.3.2.1 Mixture of Language Models
- 3.3.2.2 Probabilistic Retrieval Model for Semi-Structured Data
- 3.3.2.3 BM25F
- 3.3.2.4 Fielded Sequential Dependence Models
- 3.3.3 Learning-to-Rank
- 3.3.3.1 Features
- 3.3.3.2 Learning Algorithms
- 3.3.3.3 Practical Considerations
- 3.4 Ranking Entities Without Direct Representations
- 3.5 Evaluation
- 3.5.1 Evaluation Measures
- 3.5.2 Test Collections
- 3.5.2.1 TREC Enterprise
- 3.5.2.2 INEX Entity Ranking
- 3.5.2.3 TREC Entity
- 3.5.2.4 Semantic Search Challenge
- 3.5.2.5 INEX Linked Data
- 3.5.2.6 Question Answering over Linked Data
- 3.5.2.7 The DBpedia-Entity Test Collection
- 3.6 Summary
- 3.7 Further Reading
- References
- 4 Semantically Enriched Models for Entity Ranking
- 4.1 Semantics Means Structure
- 4.2 Preserving Structure
- 4.2.1 Multi-Valued Predicates
- 4.2.1.1 Parameter Settings
- 4.2.2 References to Entities
- 4.3 Entity Types
- 4.3.1 Type Taxonomies and Challenges
- 4.3.2 Type-Aware Entity Ranking
- 4.3.3 Estimating Type-Based Similarity
- 4.4 Entity Relationships
- 4.4.1 Ad Hoc Entity Retrieval
- 4.4.2 List Search
- 4.4.3 Related Entity Finding
- 4.4.3.1 Candidate Selection
- 4.4.3.2 Type Filtering
- 4.4.3.3 Entity Relevance
- 4.5 Similar Entity Search.
- 4.5.1 Pairwise Entity Similarity
- 4.5.1.1 Term-Based Similarity
- 4.5.1.2 Corpus-Based Similarity
- 4.5.1.3 Distributional Similarity
- 4.5.1.4 Graph-Based Similarity
- 4.5.1.5 Property-Specific Similarity
- 4.5.2 Collective Entity Similarity
- 4.5.2.1 Structure-Based Method
- 4.5.2.2 Aspect-Based Method
- 4.6 Query-Independent Ranking
- 4.6.1 Popularity
- 4.6.2 Centrality
- 4.6.2.1 PageRank
- 4.6.2.2 PageRank for Entities
- 4.6.2.3 A Two-Layered Extension of PageRank for the Web of Data
- 4.6.3 Other Methods
- 4.7 Summary
- 4.8 Further Reading
- References
- Part II Bridging Text and Structure
- 5 Entity Linking
- 5.1 From Named Entity Recognition Toward Entity Linking
- 5.1.1 Named Entity Recognition
- 5.1.2 Named Entity Disambiguation
- 5.1.3 Entity Coreference Resolution
- 5.2 The Entity Linking Task
- 5.3 The Anatomy of an Entity Linking System
- 5.4 Mention Detection
- 5.4.1 Surface Form Dictionary Construction
- 5.4.2 Filtering Mentions
- 5.4.3 Overlapping Mentions
- 5.5 Candidate Selection
- 5.6 Disambiguation
- 5.6.1 Features
- 5.6.1.1 Prior Importance Features
- 5.6.1.2 Contextual Features
- 5.6.1.3 Entity-Relatedness Features
- 5.6.2 Approaches
- 5.6.2.1 Individual Local Disambiguation
- 5.6.2.2 Individual Global Disambiguation
- 5.6.2.3 Collective Disambiguation
- 5.6.3 Pruning
- 5.7 Entity Linking Systems
- 5.8 Evaluation
- 5.8.1 Evaluation Measures
- 5.8.2 Test Collections
- 5.8.2.1 Individual Researchers
- 5.8.2.2 INEX Link-the-Wiki
- 5.8.2.3 TAC Entity Linking
- 5.8.2.4 Entity Recognition and Disambiguation Challenge
- 5.8.3 Component-Based Evaluation
- 5.9 Resources
- 5.9.1 A Cross-Lingual Dictionary for English Wikipedia Concepts
- 5.9.2 Freebase Annotations of the ClueWeb Corpora
- 5.10 Summary
- 5.11 Further Reading
- References
- 6 Populating Knowledge Bases.
- 6.1 Harvesting Knowledge from Text
- 6.1.1 Class-Instance Acquisition
- 6.1.1.1 Obtaining Instances of Semantic Classes
- 6.1.1.2 Obtaining Semantic Classes of Instances
- 6.1.2 Class-Attribute Acquisition
- 6.1.3 Relation Extraction
- 6.2 Entity-Centric Document Filtering
- 6.2.1 Overview
- 6.2.2 Mention Detection
- 6.2.3 Document Scoring
- 6.2.3.1 Mention-Based Scoring
- 6.2.3.2 Boolean Queries
- 6.2.3.3 Supervised Learning
- 6.2.4 Features
- 6.2.4.1 Document Features
- 6.2.4.2 Entity Features
- 6.2.4.3 Document-Entity Features
- 6.2.4.4 Temporal Features
- 6.2.5 Evaluation
- 6.2.5.1 Test Collections
- 6.2.5.2 Annotations
- 6.2.5.3 Evaluation Methodology
- 6.2.5.4 Evaluation Methodology Revisited
- 6.3 Slot Filling
- 6.3.1 Approaches
- 6.3.2 Evaluation
- 6.4 Summary
- 6.5 Further Reading
- References
- Part III Semantic Search
- 7 Understanding Information Needs
- 7.1 Semantic Query Analysis
- 7.1.1 Query Classification
- 7.1.1.1 Query Intent Classification
- 7.1.1.2 Query Topic Classification
- 7.1.2 Query Annotation
- 7.1.2.1 Query Segmentation
- 7.1.2.2 Query Tagging
- 7.1.3 Query Interpretation
- 7.2 Identifying Target Entity Types
- 7.2.1 Problem Definition
- 7.2.2 Unsupervised Approaches
- 7.2.2.1 Type-Centric Model
- 7.2.2.2 Entity-Centric Model
- 7.2.3 Supervised Approach
- 7.2.4 Evaluation
- 7.2.4.1 Evaluation Measures
- 7.2.4.2 Test Collections
- 7.3 Entity Linking in Queries
- 7.3.1 Entity Annotation Tasks
- 7.3.1.1 Named Entity Recognition
- 7.3.1.2 Semantic Linking
- 7.3.1.3 Interpretation Finding
- 7.3.2 Pipeline Architecture for Interpretation Finding
- 7.3.3 Candidate Entity Ranking
- 7.3.3.1 Unsupervised Approach
- 7.3.3.2 Supervised Approach
- 7.3.3.3 Gathering Additional Context
- 7.3.3.4 Evaluation and Test Collections
- 7.3.4 Producing Interpretations.
- 7.3.4.1 Unsupervised Approach
- 7.3.4.2 Supervised Approach
- 7.3.4.3 Evaluation Measures
- 7.3.4.4 Test Collections
- 7.4 Query Templates
- 7.4.1 Concepts and Definitions
- 7.4.2 Template Discovery Methods
- 7.4.2.1 Classify&
- Match
- 7.4.2.2 QueST
- 7.5 Summary
- 7.6 Further Reading
- References
- 8 Leveraging Entities in Document Retrieval
- 8.1 Mapping Queries to Entities
- 8.2 Leveraging Entities for Query Expansion
- 8.2.1 Document-Based Query Expansion
- 8.2.2 Entity-Centric Query Expansion
- 8.2.3 Unsupervised Term Selection
- 8.2.4 Supervised Term Selection
- 8.2.4.1 Features
- 8.2.4.2 Training
- 8.3 Projection-Based Methods
- 8.3.1 Explicit Semantic Analysis
- 8.3.1.1 ESA Concept-Based Indexing
- 8.3.1.2 ESA Concept-Based Retrieval
- 8.3.2 Latent Entity Space Model
- 8.3.3 EsdRank
- 8.3.3.1 Features
- 8.3.3.2 Learning-to-Rank Model
- 8.4 Entity-Based Representations
- 8.4.1 Entity-Based Document Language Models
- 8.4.2 Bag-of-Entities Representation
- 8.4.2.1 Basic Ranking Models
- 8.4.2.2 Explicit Semantic Ranking
- 8.4.2.3 Word-Entity Duet Framework
- 8.4.2.4 Attention-Based Ranking Model
- 8.5 Practical Considerations
- 8.6 Resources and Test Collections
- 8.7 Summary
- 8.8 Further Reading
- References
- 9 Utilizing Entities for an Enhanced Search Experience
- 9.1 Query Assistance
- 9.1.1 Query Auto-completion
- 9.1.1.1 Leveraging Entity Types
- 9.1.2 Query Recommendations
- 9.1.2.1 Query-Flow Graph
- 9.1.2.2 Exploiting Entity Aspects
- 9.1.2.3 Entity Types
- 9.1.2.4 Entity Relationships
- 9.1.3 Query Building Interfaces
- 9.2 Entity Cards
- 9.2.1 The Anatomy of an Entity Card
- 9.2.2 Factual Entity Summaries
- 9.2.2.1 Fact Ranking
- 9.2.2.2 Summary Generation
- 9.3 Entity Recommendations
- 9.3.1 Recommendations Given an Entity
- 9.3.2 Personalized Recommendations.
- 9.3.2.1 Entity-Based Method.