|
|
|
|
LEADER |
03768nam a22004333i 4500 |
001 |
EBC6383191 |
003 |
MiAaPQ |
005 |
20231204023215.0 |
006 |
m o d | |
007 |
cr cnu|||||||| |
008 |
231204s2014 xx o ||||0 eng d |
020 |
|
|
|a 9789814644730
|q (electronic bk.)
|
020 |
|
|
|z 9789814644723
|
035 |
|
|
|a (MiAaPQ)EBC6383191
|
035 |
|
|
|a (Au-PeEL)EBL6383191
|
035 |
|
|
|a (OCoLC)1231606981
|
040 |
|
|
|a MiAaPQ
|b eng
|e rda
|e pn
|c MiAaPQ
|d MiAaPQ
|
100 |
1 |
|
|a Altman, Russ B.
|
245 |
1 |
0 |
|a Pacific Symposium On Biocomputing 2015.
|
250 |
|
|
|a 1st ed.
|
264 |
|
1 |
|a Singapore :
|b World Scientific Publishing Company,
|c 2014.
|
264 |
|
4 |
|c ©2015.
|
300 |
|
|
|a 1 online resource (517 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Intro -- 2PSB20AnniversaryFinalv2 -- all-cp -- 0intro-cancerpanomics -- ching -- deshwar -- jang -- lehman -- nasser -- wu -- all-cp -- 0intro-cancerpathways -- engin -- kim -- 1. Introduction -- 2. Methods -- 2.1. Data -- 2.2. BioBin -- 2.3. ATHENA -- 2.4. Grammatical Evolution Neural Networks (GENN) -- 2.5. Survival fitness function -- 2.6. Experiment setup -- 3. Results and Discussion -- 3.1. Binning somatic mutations using BioBin -- 3.2. GENN modeling for somatic mutation burden -- 3.3. Biological interpretation -- 4. Conclusions -- Acknowledgments -- lockwood -- poon -- tan -- yang -- all-interactions -- 1intro-interactions -- crawford -- darabos -- frost -- holzinger -- Holzinger_PSB2015_r2VIM_1Oct2014 -- 1. Introduction -- 1.1. Variable selection that allows for interactions -- 2. Methods -- 2.1. r2VIM -- 2.2. Data Simulation -- 3. Results -- 3.1. Simulated Data -- 4. Discussion -- hu -- jeff -- patel -- restrepo -- wang -- all-crowd -- 1intro-crowdsourcing -- binder -- good -- irshad -- odgers -- waldispuhl -- all-pm -- 0intro-pm -- birol -- chang -- diggans -- fan-minogue -- glicksberg -- hinterberg -- huang -- makashir -- 2. Methods -- 2.1. Statistical framework for meta-analysis of differential co-expression -- 2.1.1. s score definition -- 2.1.2. Probability distribution of s scores -- 2.2. SLE dataset selection for meta-analysis -- 2.3. Data pre-processing -- 2.4. Meta-analysis of differential gene co-expression in SLE -- 2.5. Comparison of Type I error rates and statistical power -- 2.6. Differential expression analysis -- 2.7. Identification and annotation of gene modules -- 3. Results -- 3.1. A network of genes specifically co-expressed in SLE -- 3.2. Gene co-expression modules specific to SLE -- 3.2.1. Type I interferon response.
|
505 |
8 |
|
|a 3.2.2. Cell movement and response to wounding -- 3.2.3. Immune defense against extracellular organisms -- 4. Discussion -- 5. Conclusions -- nie -- sengupta -- all-wkshop -- 1wkshop-human -- 2wkshop-discovery -- 3wkshp-public -- 4wkshop-bioinfo -- 5psb15-erratum.
|
588 |
|
|
|a Description based on publisher supplied metadata and other sources.
|
590 |
|
|
|a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Dunker, A Keith.
|
700 |
1 |
|
|a Hunter, Lawrence.
|
700 |
1 |
|
|a Ritchie, Marylyn D.
|
700 |
1 |
|
|a Murray, Tiffany A.
|
700 |
1 |
|
|a Klein, Teri E.
|
776 |
0 |
8 |
|i Print version:
|a Altman, Russ B
|t Pacific Symposium On Biocomputing 2015
|d Singapore : World Scientific Publishing Company,c2014
|z 9789814644723
|
797 |
2 |
|
|a ProQuest (Firm)
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=6383191
|z Click to View
|