Particle Physics Reference Library : Volume 3: Accelerators and Colliders.
Main Author: | |
---|---|
Other Authors: | |
Format: | eBook |
Language: | English |
Published: |
Cham :
Springer International Publishing AG,
2020.
|
Edition: | 1st ed. |
Subjects: | |
Online Access: | Click to View |
Table of Contents:
- Intro
- Preface
- Contents
- About the Editors
- 1 Accelerators, Colliders and Their Application
- 1.1 Why Build Accelerators?
- 1.2 Types and Evolution of Accelerators
- 1.2.1 Early Accelerators
- 1.2.2 The Ray Transformer
- 1.2.3 Repetitive Acceleration
- 1.2.4 Linear Accelerators
- 1.2.5 Cyclotrons
- 1.2.6 The Synchrotron
- 1.2.7 Phase Stability
- References
- 2 Beam Dynamics
- 2.1 Linear Transverse Beam Dynamics
- 2.1.1 Co-ordinate System
- 2.1.2 Displacement and Divergence
- 2.1.3 Bending Magnets and Magnetic Rigidity
- 2.1.4 Particle Trajectory in a Dipole Bending Magnet
- 2.1.5 Weak Focusing
- 2.1.6 Alternating Gradient Focusing
- 2.1.7 Quadrupole Magnets
- 2.1.8 The Equation of Motion
- 2.1.9 Matrix Description
- 2.1.10 Transport Matrices for Lattice Components
- 2.1.11 The Betatron Envelopes
- 2.2 Coupling
- 2.2.1 Coupling Fields
- 2.2.2 Qualitative Treatment of Coupling
- 2.3 Liouville's Theorem
- 2.3.1 Chains of Accelerators
- 2.3.2 Exceptions to Liouville's Theorem
- 2.4 Momentum Dependent Transverse Motion
- 2.4.1 Dispersion
- 2.4.2 Chromaticity
- 2.5 Longitudinal Motion
- 2.5.1 Stability of the Lagging Particle
- 2.5.2 Transition Energy
- 2.5.3 Synchrotron Motion
- 2.5.4 Stationary Buckets
- References
- 3 Non-linear Dynamics in Accelerators
- 3.1 Introduction
- 3.1.1 Motivation
- 3.1.2 Single Particle Dynamics
- 3.1.3 Layout of the Treatment
- 3.2 Variables
- 3.2.1 Trace Space and Phase Space
- 3.2.2 Curved Coordinate System
- 3.3 Sources of Non-linearities
- 3.3.1 Non-linear Machine Elements
- 3.3.1.1 Unwanted Non-linear Machine Elements
- 3.3.1.2 Wanted Non-linear Machine Elements
- 3.3.2 Beam-Beam Effects and Space Charge
- 3.4 Map Based Techniques
- 3.5 Linear Normal Forms
- 3.5.1 Sequence of Maps
- 3.5.2 Analysis of the One Turn Map
- 3.5.3 Action-Angle Variables.
- 3.5.4 Beam Emittance
- 3.6 Techniques and Tools to Evaluate and Correct Non-linear Effects
- 3.6.1 Particle Tracking
- 3.6.1.1 Symplecticity
- 3.6.2 Approximations and Tools
- 3.6.3 Taylor and Power Maps
- 3.6.3.1 Taylor Maps
- 3.6.3.2 Thick and Thin Lenses
- 3.6.3.3 Symplectic Matrices and Symplectic Integration
- 3.6.3.4 Comparison Symplectic Versus Non-symplectic Integration
- 3.7 Hamiltonian Treatment of Electro-Magnetic Fields
- 3.7.1 Lagrangian of Electro-Magnetic Fields
- 3.7.1.1 Lagrangian and Hamiltonian
- 3.7.2 Hamiltonian with Electro-Magnetic Fields
- 3.7.3 Hamiltonian Used for Accelerator Physics
- 3.7.3.1 Lie Maps and Transformations
- 3.7.3.2 Concatenation of Lie Transformations
- 3.7.4 Analysis Techniques: Poincare Surface of Section
- 3.7.5 Analysis Techniques: Normal Forms
- 3.7.5.1 Normal Form Transformation: Linear Case
- 3.7.5.2 Normal Form Transformation: Non-linear Case
- 3.7.6 Truncated Power Series Algebra Based on Automatic Differentiation
- 3.7.6.1 Automatic Differentiation: Concept
- 3.7.6.2 Automatic Differentiation: The Algebra
- 3.7.6.3 Automatic Differentiation: The Application
- 3.7.6.4 Automatic Differentiation: Higher Orders
- 3.7.6.5 Automatic Differentiation: More Variables
- 3.7.6.6 Differential Algebra: Applications to Accelerators
- 3.7.6.7 Differential Algebra: Simple Example
- 3.8 Beam Dynamics with Non-linearities
- 3.8.1 Amplitude Detuning
- 3.8.1.1 Amplitude Detuning due to Non-linearities in Machine Elements
- 3.8.1.2 Amplitude Detuning due to Beam-Beam Effects
- 3.8.1.3 Phase Space Structure
- 3.8.2 Non-linear Resonances
- 3.8.2.1 Resonance Condition in One Dimension
- 3.8.2.2 Driving Terms
- 3.8.3 Chromaticity and Chromaticity Correction
- 3.8.4 Dynamic Aperture
- 3.8.4.1 Long Term Stability and Chaotic Behaviour
- 3.8.4.2 Practical Implications
- References.
- 4 Impedance and Collective Effects
- 4.1 Space Charge
- 4.1.1 Direct Space Charge
- 4.1.2 Indirect Space Charge
- 4.2 Wake Fields and Impedances
- 4.3 Coherent Instabilities
- 4.3.1 Longitudinal
- 4.3.2 Transverse
- 4.4 Landau Damping
- 4.4.1 Transverse
- 4.4.2 Longitudinal
- 4.5 Two-Stream Effects (Electron Cloud and Ions)
- 4.5.1 Electron Cloud Build-Up in Positron/Hadron Machines
- 4.5.2 The Electron Cloud Instability
- 4.5.3 Mitigation and Suppression
- 4.6 Beam-Beam Effects
- 4.6.1 Introduction
- 4.6.2 Beam-Beam Force
- 4.6.2.1 Elliptical Beams
- 4.6.2.2 Round Beams
- 4.6.3 Incoherent Effects: Single Particle Effects
- 4.6.3.1 Beam-Beam Parameter
- 4.6.3.2 Non-linear Effects
- 4.6.3.3 Beam Stability
- 4.6.3.4 Beam-Beam Limit
- 4.6.4 Studies of Head-on Collisions at the LHC
- 4.6.4.1 PACMAN Bunches
- 4.6.5 Head-on Beam-Beam Tune Shift
- 4.6.6 Effect of Number of Head-on Collisions
- 4.6.7 Crossing Angle and Long Range Interactions
- 4.6.7.1 Long-Range Beam-Beam Effects
- 4.6.7.2 Opposite Sign Tune Shift
- 4.6.7.3 Strength of Long-Range Interactions
- 4.6.7.4 Footprint for Long-Range Interactions
- 4.6.8 Studies of Long Range Interactions in the LHC
- 4.6.8.1 Dynamic Aperture Reduction Due to Long-Range Interactions
- 4.6.8.2 Beam-Beam Induced Orbit Effects
- 4.6.9 Coherent Beam-Beam Effects
- 4.6.9.1 Coherent Beam-Beam Modes
- 4.6.10 Compensation of Beam-Beam Effects
- 4.6.10.1 Electron Lenses
- 4.6.10.2 Electrostatic Wire
- 4.6.10.3 Möbius Scheme
- 4.7 Numerical Modelling
- 4.7.1 The Electromagnetic Problem
- 4.7.2 Beam Dynamics
- References
- 5 Interactions of Beams with Surroundings
- 5.1 The Interactions of High Energy Particles with Matter
- 5.1.1 Basic Physical Processes in Radiation Transport Through Matter
- 5.1.2 Simulation Tools
- 5.1.2.1 FLUKA
- 5.1.2.2 GEANT4
- 5.1.2.3 MARS15.
- 5.1.2.4 MCNP
- 5.1.2.5 PHITS
- 5.1.2.6 Simulation Uncertainties
- 5.1.3 Practical Shielding Considerations
- 5.1.3.1 Radiation Attenuation
- 5.1.3.2 Shielding of Electromagnetic Showers
- 5.1.3.3 Shielding of Neutrons
- 5.2 Lifetimes, Intensity and Luminosity
- 5.2.1 Beam-Gas
- 5.2.2 Thermal Photons
- 5.2.3 Luminosity Lifetime
- 5.3 Experimental Conditions
- 5.3.1 Sources of Detector Background and Detector Performance
- 5.3.2 Synchrotron Radiation Background
- References
- 6 Design and Principles of Synchrotrons and Circular Colliders
- 6.1 Beam Optics and Lattice Design in High Energy Particle Accelerators
- 6.1.1 Geometry of the Ring
- 6.1.2 Lattice Design
- 6.2 Lattice Insertions
- 6.2.1 Low Beta Insertions
- 6.2.2 Injection and Extraction Insertions
- 6.2.3 Dispersion Suppressors
- 6.2.3.1 The "Straightforward" Way: Dispersion Suppression Using Quadrupole Magnets
- 6.2.3.2 The "Clever" Way: Half Bend Schemes
- 6.2.3.3 The "Missing Bend" Dispersion Suppressor Scheme
- 6.3 Injection and Extraction Techniques
- 6.3.1 Fast Injection
- 6.3.2 Slip-Stacking Injection
- 6.3.3 H− Charge-Exchange Injection
- 6.3.4 Lepton Accumulation Injection
- 6.3.5 Fast Extraction
- 6.3.6 Resonant Extraction
- 6.3.7 Continuous Transfer Extraction
- 6.3.8 Resonant Continuous Transfer Extraction
- 6.3.9 Other Injection and Extraction Techniques
- 6.4 Concept of Luminosity
- 6.4.1 Introduction
- 6.4.2 Computation of Luminosity
- 6.4.3 Luminosity with Correction Factors
- 6.4.3.1 Effect of Crossing Angle and Transverse Offset
- 6.4.3.2 Hour Glass Effect
- 6.4.3.3 Crabbed Waist Scheme
- 6.4.4 Integrated Luminosity and Event Pile Up
- 6.4.5 Measurement and Calibration of Luminosity
- 6.4.6 Absolute Luminosity: Lepton Colliders
- 6.4.7 Absolute Luminosity: Hadron Colliders.
- 6.4.7.1 Measurement by Profile Monitors and Beam Displacement
- 6.4.7.2 Absolute Measurement with Optical Theorem
- 6.4.8 Luminosity in Linear Colliders
- 6.4.8.1 Disruption and Luminosity Enhancement Factor
- 6.4.8.2 Beamstrahlung
- 6.5 Synchrotron Radiation and Damping
- 6.5.1 Basic Properties of Synchrotron Radiation
- 6.5.2 Radiation Damping
- 6.6 Computer Codes for Beam Dynamics
- 6.6.1 Introduction
- 6.6.2 Classes of Beam Dynamics Codes
- 6.6.3 Optics Codes
- 6.6.4 Single Particle Tracking Codes
- 6.6.4.1 Techniques
- 6.6.4.2 Analysis of Tracking Data
- 6.6.5 Multi Particle Tracking Codes
- 6.6.6 Machine Protection
- 6.7 Electron-Positron Circular Colliders
- 6.7.1 Physics of Electron-Positron Rings
- 6.7.2 Design of Colliders
- 6.7.3 Large Piwinski Angle and Crab Waist Collision Scheme
- 6.8 Hadron Colliders and Electron-Proton Colliders
- 6.8.1 Principles of Hadron Colliders
- 6.8.2 Proton-Antiproton Colliders
- 6.8.3 Proton-Proton Colliders
- 6.8.4 Electron-Proton Colliders
- 6.9 Ion Colliders
- 6.10 Beam Cooling
- 6.10.1 Introduction
- 6.10.2 Beam Cooling Techniques
- 6.10.2.1 Radiation Cooling
- 6.10.2.2 Microwave Stochastic Cooling
- 6.10.2.3 Electron Cooling
- 6.10.2.4 Laser Cooling
- 6.10.2.5 Ionisation Cooling
- 6.10.2.6 Cooling of Particles in Traps
- References
- 7 Design and Principles of Linear Accelerators and Colliders
- 7.1 General Introduction on Linear Accelerators
- 7.2 High Luminosity Issues and Beam-Beam Effects
- 7.3 CLIC &
- ILC
- 7.3.1 Introduction
- 7.3.2 ILC Design
- 7.3.3 CLIC Design
- 7.3.4 On-Going or Recent R&
- D
- 7.3.4.1 ILC Specific
- 7.3.4.2 CLIC Specific
- 7.3.5 Common Issues and Prospects
- 7.4 Accelerating Structures Design and Efficiency
- 7.4.1 Normal Conducting Accelerating Structures
- 7.4.2 Superconducting Accelerating Structures.
- 7.5 Wakefields and Emittance Preservation.