Particle Physics Reference Library : Volume 3: Accelerators and Colliders.

Bibliographic Details
Main Author: Myers, Stephen.
Other Authors: Schopper, Herwig.
Format: eBook
Language:English
Published: Cham : Springer International Publishing AG, 2020.
Edition:1st ed.
Subjects:
Online Access:Click to View
Table of Contents:
  • Intro
  • Preface
  • Contents
  • About the Editors
  • 1 Accelerators, Colliders and Their Application
  • 1.1 Why Build Accelerators?
  • 1.2 Types and Evolution of Accelerators
  • 1.2.1 Early Accelerators
  • 1.2.2 The Ray Transformer
  • 1.2.3 Repetitive Acceleration
  • 1.2.4 Linear Accelerators
  • 1.2.5 Cyclotrons
  • 1.2.6 The Synchrotron
  • 1.2.7 Phase Stability
  • References
  • 2 Beam Dynamics
  • 2.1 Linear Transverse Beam Dynamics
  • 2.1.1 Co-ordinate System
  • 2.1.2 Displacement and Divergence
  • 2.1.3 Bending Magnets and Magnetic Rigidity
  • 2.1.4 Particle Trajectory in a Dipole Bending Magnet
  • 2.1.5 Weak Focusing
  • 2.1.6 Alternating Gradient Focusing
  • 2.1.7 Quadrupole Magnets
  • 2.1.8 The Equation of Motion
  • 2.1.9 Matrix Description
  • 2.1.10 Transport Matrices for Lattice Components
  • 2.1.11 The Betatron Envelopes
  • 2.2 Coupling
  • 2.2.1 Coupling Fields
  • 2.2.2 Qualitative Treatment of Coupling
  • 2.3 Liouville's Theorem
  • 2.3.1 Chains of Accelerators
  • 2.3.2 Exceptions to Liouville's Theorem
  • 2.4 Momentum Dependent Transverse Motion
  • 2.4.1 Dispersion
  • 2.4.2 Chromaticity
  • 2.5 Longitudinal Motion
  • 2.5.1 Stability of the Lagging Particle
  • 2.5.2 Transition Energy
  • 2.5.3 Synchrotron Motion
  • 2.5.4 Stationary Buckets
  • References
  • 3 Non-linear Dynamics in Accelerators
  • 3.1 Introduction
  • 3.1.1 Motivation
  • 3.1.2 Single Particle Dynamics
  • 3.1.3 Layout of the Treatment
  • 3.2 Variables
  • 3.2.1 Trace Space and Phase Space
  • 3.2.2 Curved Coordinate System
  • 3.3 Sources of Non-linearities
  • 3.3.1 Non-linear Machine Elements
  • 3.3.1.1 Unwanted Non-linear Machine Elements
  • 3.3.1.2 Wanted Non-linear Machine Elements
  • 3.3.2 Beam-Beam Effects and Space Charge
  • 3.4 Map Based Techniques
  • 3.5 Linear Normal Forms
  • 3.5.1 Sequence of Maps
  • 3.5.2 Analysis of the One Turn Map
  • 3.5.3 Action-Angle Variables.
  • 3.5.4 Beam Emittance
  • 3.6 Techniques and Tools to Evaluate and Correct Non-linear Effects
  • 3.6.1 Particle Tracking
  • 3.6.1.1 Symplecticity
  • 3.6.2 Approximations and Tools
  • 3.6.3 Taylor and Power Maps
  • 3.6.3.1 Taylor Maps
  • 3.6.3.2 Thick and Thin Lenses
  • 3.6.3.3 Symplectic Matrices and Symplectic Integration
  • 3.6.3.4 Comparison Symplectic Versus Non-symplectic Integration
  • 3.7 Hamiltonian Treatment of Electro-Magnetic Fields
  • 3.7.1 Lagrangian of Electro-Magnetic Fields
  • 3.7.1.1 Lagrangian and Hamiltonian
  • 3.7.2 Hamiltonian with Electro-Magnetic Fields
  • 3.7.3 Hamiltonian Used for Accelerator Physics
  • 3.7.3.1 Lie Maps and Transformations
  • 3.7.3.2 Concatenation of Lie Transformations
  • 3.7.4 Analysis Techniques: Poincare Surface of Section
  • 3.7.5 Analysis Techniques: Normal Forms
  • 3.7.5.1 Normal Form Transformation: Linear Case
  • 3.7.5.2 Normal Form Transformation: Non-linear Case
  • 3.7.6 Truncated Power Series Algebra Based on Automatic Differentiation
  • 3.7.6.1 Automatic Differentiation: Concept
  • 3.7.6.2 Automatic Differentiation: The Algebra
  • 3.7.6.3 Automatic Differentiation: The Application
  • 3.7.6.4 Automatic Differentiation: Higher Orders
  • 3.7.6.5 Automatic Differentiation: More Variables
  • 3.7.6.6 Differential Algebra: Applications to Accelerators
  • 3.7.6.7 Differential Algebra: Simple Example
  • 3.8 Beam Dynamics with Non-linearities
  • 3.8.1 Amplitude Detuning
  • 3.8.1.1 Amplitude Detuning due to Non-linearities in Machine Elements
  • 3.8.1.2 Amplitude Detuning due to Beam-Beam Effects
  • 3.8.1.3 Phase Space Structure
  • 3.8.2 Non-linear Resonances
  • 3.8.2.1 Resonance Condition in One Dimension
  • 3.8.2.2 Driving Terms
  • 3.8.3 Chromaticity and Chromaticity Correction
  • 3.8.4 Dynamic Aperture
  • 3.8.4.1 Long Term Stability and Chaotic Behaviour
  • 3.8.4.2 Practical Implications
  • References.
  • 4 Impedance and Collective Effects
  • 4.1 Space Charge
  • 4.1.1 Direct Space Charge
  • 4.1.2 Indirect Space Charge
  • 4.2 Wake Fields and Impedances
  • 4.3 Coherent Instabilities
  • 4.3.1 Longitudinal
  • 4.3.2 Transverse
  • 4.4 Landau Damping
  • 4.4.1 Transverse
  • 4.4.2 Longitudinal
  • 4.5 Two-Stream Effects (Electron Cloud and Ions)
  • 4.5.1 Electron Cloud Build-Up in Positron/Hadron Machines
  • 4.5.2 The Electron Cloud Instability
  • 4.5.3 Mitigation and Suppression
  • 4.6 Beam-Beam Effects
  • 4.6.1 Introduction
  • 4.6.2 Beam-Beam Force
  • 4.6.2.1 Elliptical Beams
  • 4.6.2.2 Round Beams
  • 4.6.3 Incoherent Effects: Single Particle Effects
  • 4.6.3.1 Beam-Beam Parameter
  • 4.6.3.2 Non-linear Effects
  • 4.6.3.3 Beam Stability
  • 4.6.3.4 Beam-Beam Limit
  • 4.6.4 Studies of Head-on Collisions at the LHC
  • 4.6.4.1 PACMAN Bunches
  • 4.6.5 Head-on Beam-Beam Tune Shift
  • 4.6.6 Effect of Number of Head-on Collisions
  • 4.6.7 Crossing Angle and Long Range Interactions
  • 4.6.7.1 Long-Range Beam-Beam Effects
  • 4.6.7.2 Opposite Sign Tune Shift
  • 4.6.7.3 Strength of Long-Range Interactions
  • 4.6.7.4 Footprint for Long-Range Interactions
  • 4.6.8 Studies of Long Range Interactions in the LHC
  • 4.6.8.1 Dynamic Aperture Reduction Due to Long-Range Interactions
  • 4.6.8.2 Beam-Beam Induced Orbit Effects
  • 4.6.9 Coherent Beam-Beam Effects
  • 4.6.9.1 Coherent Beam-Beam Modes
  • 4.6.10 Compensation of Beam-Beam Effects
  • 4.6.10.1 Electron Lenses
  • 4.6.10.2 Electrostatic Wire
  • 4.6.10.3 Möbius Scheme
  • 4.7 Numerical Modelling
  • 4.7.1 The Electromagnetic Problem
  • 4.7.2 Beam Dynamics
  • References
  • 5 Interactions of Beams with Surroundings
  • 5.1 The Interactions of High Energy Particles with Matter
  • 5.1.1 Basic Physical Processes in Radiation Transport Through Matter
  • 5.1.2 Simulation Tools
  • 5.1.2.1 FLUKA
  • 5.1.2.2 GEANT4
  • 5.1.2.3 MARS15.
  • 5.1.2.4 MCNP
  • 5.1.2.5 PHITS
  • 5.1.2.6 Simulation Uncertainties
  • 5.1.3 Practical Shielding Considerations
  • 5.1.3.1 Radiation Attenuation
  • 5.1.3.2 Shielding of Electromagnetic Showers
  • 5.1.3.3 Shielding of Neutrons
  • 5.2 Lifetimes, Intensity and Luminosity
  • 5.2.1 Beam-Gas
  • 5.2.2 Thermal Photons
  • 5.2.3 Luminosity Lifetime
  • 5.3 Experimental Conditions
  • 5.3.1 Sources of Detector Background and Detector Performance
  • 5.3.2 Synchrotron Radiation Background
  • References
  • 6 Design and Principles of Synchrotrons and Circular Colliders
  • 6.1 Beam Optics and Lattice Design in High Energy Particle Accelerators
  • 6.1.1 Geometry of the Ring
  • 6.1.2 Lattice Design
  • 6.2 Lattice Insertions
  • 6.2.1 Low Beta Insertions
  • 6.2.2 Injection and Extraction Insertions
  • 6.2.3 Dispersion Suppressors
  • 6.2.3.1 The "Straightforward" Way: Dispersion Suppression Using Quadrupole Magnets
  • 6.2.3.2 The "Clever" Way: Half Bend Schemes
  • 6.2.3.3 The "Missing Bend" Dispersion Suppressor Scheme
  • 6.3 Injection and Extraction Techniques
  • 6.3.1 Fast Injection
  • 6.3.2 Slip-Stacking Injection
  • 6.3.3 H− Charge-Exchange Injection
  • 6.3.4 Lepton Accumulation Injection
  • 6.3.5 Fast Extraction
  • 6.3.6 Resonant Extraction
  • 6.3.7 Continuous Transfer Extraction
  • 6.3.8 Resonant Continuous Transfer Extraction
  • 6.3.9 Other Injection and Extraction Techniques
  • 6.4 Concept of Luminosity
  • 6.4.1 Introduction
  • 6.4.2 Computation of Luminosity
  • 6.4.3 Luminosity with Correction Factors
  • 6.4.3.1 Effect of Crossing Angle and Transverse Offset
  • 6.4.3.2 Hour Glass Effect
  • 6.4.3.3 Crabbed Waist Scheme
  • 6.4.4 Integrated Luminosity and Event Pile Up
  • 6.4.5 Measurement and Calibration of Luminosity
  • 6.4.6 Absolute Luminosity: Lepton Colliders
  • 6.4.7 Absolute Luminosity: Hadron Colliders.
  • 6.4.7.1 Measurement by Profile Monitors and Beam Displacement
  • 6.4.7.2 Absolute Measurement with Optical Theorem
  • 6.4.8 Luminosity in Linear Colliders
  • 6.4.8.1 Disruption and Luminosity Enhancement Factor
  • 6.4.8.2 Beamstrahlung
  • 6.5 Synchrotron Radiation and Damping
  • 6.5.1 Basic Properties of Synchrotron Radiation
  • 6.5.2 Radiation Damping
  • 6.6 Computer Codes for Beam Dynamics
  • 6.6.1 Introduction
  • 6.6.2 Classes of Beam Dynamics Codes
  • 6.6.3 Optics Codes
  • 6.6.4 Single Particle Tracking Codes
  • 6.6.4.1 Techniques
  • 6.6.4.2 Analysis of Tracking Data
  • 6.6.5 Multi Particle Tracking Codes
  • 6.6.6 Machine Protection
  • 6.7 Electron-Positron Circular Colliders
  • 6.7.1 Physics of Electron-Positron Rings
  • 6.7.2 Design of Colliders
  • 6.7.3 Large Piwinski Angle and Crab Waist Collision Scheme
  • 6.8 Hadron Colliders and Electron-Proton Colliders
  • 6.8.1 Principles of Hadron Colliders
  • 6.8.2 Proton-Antiproton Colliders
  • 6.8.3 Proton-Proton Colliders
  • 6.8.4 Electron-Proton Colliders
  • 6.9 Ion Colliders
  • 6.10 Beam Cooling
  • 6.10.1 Introduction
  • 6.10.2 Beam Cooling Techniques
  • 6.10.2.1 Radiation Cooling
  • 6.10.2.2 Microwave Stochastic Cooling
  • 6.10.2.3 Electron Cooling
  • 6.10.2.4 Laser Cooling
  • 6.10.2.5 Ionisation Cooling
  • 6.10.2.6 Cooling of Particles in Traps
  • References
  • 7 Design and Principles of Linear Accelerators and Colliders
  • 7.1 General Introduction on Linear Accelerators
  • 7.2 High Luminosity Issues and Beam-Beam Effects
  • 7.3 CLIC &amp
  • ILC
  • 7.3.1 Introduction
  • 7.3.2 ILC Design
  • 7.3.3 CLIC Design
  • 7.3.4 On-Going or Recent R&amp
  • D
  • 7.3.4.1 ILC Specific
  • 7.3.4.2 CLIC Specific
  • 7.3.5 Common Issues and Prospects
  • 7.4 Accelerating Structures Design and Efficiency
  • 7.4.1 Normal Conducting Accelerating Structures
  • 7.4.2 Superconducting Accelerating Structures.
  • 7.5 Wakefields and Emittance Preservation.