New Directions in Geometric and Applied Knot Theory.
Main Author: | |
---|---|
Other Authors: | , |
Format: | eBook |
Language: | English |
Published: |
Warschau/Berlin :
Walter de Gruyter GmbH,
2018.
|
Edition: | 1st ed. |
Subjects: | |
Online Access: | Click to View |
Table of Contents:
- Intro
- 1 Introduction
- Geometric curvature energies: facts, trends, and open problems
- 2.1 Facts
- 2.2 Trends and open problems
- Bibliography
- On Möbius invariant decomposition of the Möbius energy
- 3.1 O'Hara's knot energies
- 3.2 Freedman-He-Wang's procedure and the Kusner-Sullivan conjecture
- 3.3 Basic properties of the Möbius energy
- 3.4 The Möbius invariant decomposition
- 3.4.1 The decomposition
- 3.4.2 Variational formulae
- 3.4.3 The Möbius invariance
- Bibliography
- Pseudogradient Flows of Geometric Energies
- 4.1 Introduction
- 4.2 Banach Bundles
- 4.2.1 General Fiber Bundles
- 4.2.2 Banach Bundles and Hilbert Bundles
- 4.3 Riesz Structures
- 4.3.1 Riesz Structures
- 4.3.2 Riesz Bundle Structures
- 4.3.3 Riesz Manifolds
- 4.4 Pseudogradient Flow
- 4.5 Applications
- 4.5.1 Minimal Surfaces
- 4.5.2 Elasticae
- 4.5.3 Euler-Bernoulli Energy and Euler Elastica
- 4.5.4 Willmore Energy
- 4.6 Final Remarks
- Bibliography
- Discrete knot energies
- 5.1 Introduction
- 5.1.1 Notation
- 5.2 Möbius Energy
- 5.3 Integral Menger Curvature
- 5.4 Thickness
- A.1 Appendix: Postlude in -convergence
- Bibliography
- Khovanov homology and torsion
- 6.1 Introduction
- 6.2 Definition and structure of Khovanov link homology
- 6.3 Torsion of Khovanov link homology
- 6.4 Homological invariants of alternating and quasi-alternating cobordisms
- Bibliography
- Quadrisecants and essential secants of knots
- 7.1 Introduction
- 7.2 Quadrisecants
- 7.2.1 Essential secants
- 7.2.2 Results about quadrisecants
- 7.2.3 Counting quadrisecants and quadrisecant approximations.
- 7.3 Key ideas in showing quadrisecants exist
- 7.3.1 Trisecants and quadrisecants.
- 7.3.2 Structure of the set of trisecants.
- 7.4 Applications of essential secants and quadrisecants
- 7.4.1 Total curvature
- 7.4.2 Second Hull.
- 7.4.3 Ropelength
- 7.4.4 Distortion
- 7.4.5 Final Remarks
- Bibliography
- Polygonal approximation of unknots by quadrisecants
- 8.1 Introduction
- 8.2 Quadrisecant approximation of knots
- 8.3 Quadrisecants of Polygonal Unknots
- 8.4 Quadrisecants of Smooth Unknots
- 8.5 Finding Quadrisecants
- 8.6 Test for Good Approximations
- Bibliography
- Open knotting
- 9.1 Introduction
- 9.2 Defining open knotting
- 9.2.1 Single closure techniques
- 9.2.2 Stochastic techniques
- 9.2.3 Other closure techniques
- 9.2.4 Topology of knotted arcs
- 9.3 Visualizing knotting in open chains using the knotting fingerprint
- 9.4 Features of knotting fingerprints, knotted cores, and crossing changes
- 9.5 Conclusions
- Bibliography
- The Knot Spectrum of Random Knot Spaces
- 10.1 Introduction
- 10.2 Basic mathematical background in knot theory
- 10.3 Spaces of random knots, knot sampling and knot identification
- 10.4 An analysis of the behavior of PK with respect to length and radius
- 10.4.1 PK(L,R) as a function of length L for fixed R
- 10.4.2 PK(L,R) as a function of confinement radius R for fixed L
- 10.4.3 Modeling PK as a function of length and radius.
- 10.5 Numerical results
- 10.5.1 The numerical analysis of PK(L,R) based on the old data
- 10.5.2 The numerical analysis of PK(L,R) based on the new data
- 10.5.3 The location of local maxima of PK(L,R)
- 10.6 The influence of the confinement radius on the distributions of knot types
- 10.6.1 3-, 4-, and 5-crossing knots
- 10.6.2 6-crossing knots
- 10.6.3 7-crossing knots
- 10.6.4 8-crossing knots
- 10.6.5 9-crossing knots
- 10.6.6 10-crossing knots
- 10.7 The influence of polygon length on the distributions of knot types in the presence of confinement
- 10.7.1 3-, 4-, and 5-crossing knots
- 10.7.2 6-crossing knots
- 10.7.3 7-crossing knots
- 10.7.4 8-crossing knots.
- 10.7.5 9-crossing knots
- 10.7.6 10-crossing knots
- 10.8 Conclusions
- Bibliography
- Sampling Spaces of Thick Polygons
- 11.1 Introduction
- 11.2 Classical Perspectives
- 11.2.1 Thickness of polygons
- 11.2.2 Self-avoiding random walks
- 11.2.3 Closed polygons: fold algorithm
- 11.2.4 Closed polygons: crankshaft algorithm
- 11.2.5 Quaternionic Perspective
- 11.3 Sampling Thick Polygons
- 11.3.1 Primer on Probability Theory
- 11.3.2 Open polygons: Plunkett algorithm ChapmanPlunkett2016
- 11.3.3 Closed polygons: Chapman algorithm
- 11.4 Discussion and Conclusions
- Bibliography
- Equilibria of elastic cable knots and links
- 12.1 Introduction
- 12.2 Theory of elastic braids made of two equidistant strands
- 12.2.1 Equidistant curves, reference frames and strains
- 12.2.2 Equations for the standard 2-braid
- 12.2.3 Kinematics equations
- 12.3 Numerical solution
- 12.3.1 Torus knots
- 12.3.2 Torus links
- 12.4 Concluding remarks
- Bibliography
- Groundstate energy spectra of knots and links: magnetic versus bending energy
- 13.1 Introduction
- 13.2 Magnetic knots and links in ideal conditions
- 13.3 The prototype problem
- 13.4 Relaxation of magnetic knots and constrained minima
- 13.5 Groundstate magnetic energy spectra
- 13.6 Bending energy spectra
- 13.7 Magnetic energy versus bending energy
- 13.8 Conclusions
- Bibliography.