Handbook of Vascular Biometrics.

Bibliographic Details
Main Author: Uhl, Andreas.
Other Authors: Busch, Christoph., Marcel, Sébastien., Veldhuis, Raymond.
Format: eBook
Language:English
Published: Cham : Springer International Publishing AG, 2019.
Edition:1st ed.
Series:Advances in Computer Vision and Pattern Recognition Series
Subjects:
Online Access:Click to View
Table of Contents:
  • Intro
  • Foreword
  • Preface
  • Objectives
  • Audience
  • Organisation
  • Part I: Introduction
  • Part II: Hand and Finger Vein Biometrics
  • Part III: Sclera and Retina Biometrics
  • Part IV: Security and Privacy in Vascular Biometrics
  • Acknowledgements
  • Contents
  • Part I Introduction
  • 1 State of the Art in Vascular Biometrics
  • 1.1 Introduction
  • 1.1.1 Imaging Hand-Based Vascular Biometric Traits
  • 1.1.2 Imaging Eye-Based Vascular Biometric Traits
  • 1.1.3 Pros and Cons of Vascular Biometric Traits
  • 1.2 Commercial Sensors and Systems
  • 1.2.1 Hand-Based Vascular Traits
  • 1.2.2 Eye-Based Vascular Traits
  • 1.3 Algorithms in the Recognition Toolchain
  • 1.3.1 Finger Vein Recognition Toolchain
  • 1.3.2 Palm Vein Recognition Toolchain
  • 1.3.3 (Dorsal) Hand Vein Recognition Toolchain
  • 1.3.4 Wrist Vein Recognition Toolchain
  • 1.3.5 Retina Recognition Toolchain
  • 1.3.6 Sclera Recognition Toolchain
  • 1.4 Datasets, Competitions and Open-Source Software
  • 1.4.1 Hand-Based Vascular Traits
  • 1.4.2 Eye-Based Vascular Traits
  • 1.5 Template Protection
  • 1.5.1 Hand-Based Vascular Traits
  • 1.5.2 Eye-Based Vascular Traits
  • 1.6 Presentation Attacks and Detection, and Sample Quality
  • 1.6.1 Presentation Attack Detection
  • 1.6.2 Biometric Sample Quality-Hand-Based Vascular Traits
  • 1.6.3 Biometric Sample Quality-Eye-Based Vascular Traits
  • 1.7 Mobile and On-the-Move Acquisition
  • 1.7.1 Hand-Based Vascular Traits
  • 1.7.2 Eye-Based Vascular Traits
  • 1.8 Disease Impact on Recognition and (Template) Privacy
  • 1.9 Conclusion and Outlook
  • References
  • 2 A High-Quality Finger Vein Dataset Collected Using a Custom-Designed Capture Device
  • 2.1 Introduction
  • 2.2 Overview of Finger Vein Acquisition Systems
  • 2.2.1 Types of Sensors
  • 2.2.2 Commercial Sensors
  • 2.2.3 Sensors Developed by Academics.
  • 2.3 University of Twente Finger Vein Capture Device
  • 2.4 Description of Dataset
  • 2.5 Results
  • 2.5.1 Performance Analysis
  • 2.6 Next-Generation Finger Vein Scanner
  • 2.6.1 Overview
  • 2.6.2 Illumination Control
  • 2.6.3 3D Reconstruction
  • 2.7 Conclusions
  • 2.8 Future Work
  • References
  • 3 OpenVein-An Open-Source Modular Multipurpose Finger Vein Scanner Design
  • 3.1 Introduction
  • 3.2 Finger Vein Scanners
  • 3.2.1 Light Source Positioning
  • 3.2.2 Two Main Perspectives of the Finger-Dorsal and Palmar
  • 3.2.3 Commercial Finger Vein Scanners
  • 3.2.4 Finger Vein Prototype Scanners and Datasets in Research
  • 3.3 PLUS OpenVein Finger Vein Scanner
  • 3.3.1 Advantages and Differences to Existing Designs
  • 3.3.2 Image Sensor, Lens and Additional Filter
  • 3.3.3 Light Transmission Illuminator
  • 3.3.4 Reflected Light Illuminator
  • 3.3.5 Illuminator Brightness Control Board
  • 3.3.6 Finger Placement Unit
  • 3.3.7 Housing Parts
  • 3.3.8 Capturing Software
  • 3.4 PLUSVein-FV3 Finger Vein Dataset
  • 3.5 Conclusion
  • 3.5.1 Future Work
  • References
  • 4 An Available Open-Source Vein Recognition Framework
  • 4.1 Introduction
  • 4.2 Related Work
  • 4.3 PLUS OpenVein Toolkit
  • 4.3.1 Directory Structure
  • 4.3.2 Settings Files
  • 4.3.3 External Dependencies
  • 4.4 Included Vein Recognition Schemes
  • 4.4.1 Input File Handling/Supported Datasets
  • 4.4.2 Preprocessing
  • 4.4.3 Feature Extraction
  • 4.4.4 Comparison
  • 4.4.5 Comparison/Evaluation Protocols
  • 4.4.6 Performance Evaluation Tools
  • 4.4.7 Feature and Score-Level Fusion
  • 4.5 Experimental Example
  • 4.5.1 Dataset and Experimental Set-Up
  • 4.5.2 Experimental Results
  • 4.6 Conclusion and Future Work
  • References
  • Part II Hand and Finger Vein Biometrics
  • 5 Use Case of Palm Vein Authentication
  • 5.1 Introduction
  • 5.2 Palm Vein Sensing
  • 5.3 Sensor Products with Reflection Method.
  • 5.4 Matching Performance
  • 5.5 Use Cases of Palm Vein Authentication
  • 5.5.1 Usage Situation
  • 5.5.2 Login Authentication
  • 5.5.3 Physical Access Control Systems
  • 5.5.4 Payment Systems
  • 5.5.5 Financial Services
  • 5.5.6 Health Care
  • 5.5.7 Airport Security
  • 5.5.8 Government and Municipal
  • 5.6 Conclusion
  • References
  • 6 Evolution of Finger Vein Biometric Devices in Terms of Usability
  • 6.1 Introduction
  • 6.1.1 Early Implementation
  • 6.1.2 Commercialisation
  • 6.1.3 Evolutions of the Finger Vein Biometric Devices
  • 6.2 Compliance with Regulations
  • 6.2.1 Use Case/Background
  • 6.2.2 Usability Requirement Details
  • 6.2.3 Challenges
  • 6.2.4 Implementation
  • 6.3 Compactness
  • 6.3.1 Use Case/Background
  • 6.3.2 Usability Requirement Details
  • 6.3.3 Challenges
  • 6.3.4 Implementation
  • 6.4 Portability and Mobility
  • 6.4.1 Use Case/Background
  • 6.4.2 Usability Requirement Details
  • 6.4.3 Challenges
  • 6.4.4 Implementation
  • 6.5 Universal Design
  • 6.5.1 Use Case/Background
  • 6.5.2 Usability Requirement Details
  • 6.5.3 Challenges
  • 6.5.4 Implementation
  • 6.6 Durability and Anti-vandalism
  • 6.6.1 Use Case/Background
  • 6.6.2 Usability Requirement Details
  • 6.6.3 Challenges
  • 6.6.4 Implementation
  • 6.7 High Throughput
  • 6.7.1 Use Case/Background
  • 6.7.2 Usability Requirement Details
  • 6.7.3 Challenges
  • 6.7.4 Implementation
  • 6.8 Universality/Availability
  • 6.8.1 Use Case/Background
  • 6.8.2 Usability Requirement Details
  • 6.8.3 Challenges
  • 6.8.4 Implementation
  • 6.9 Summary
  • References
  • 7 Towards Understanding Acquisition Conditions Influencing Finger Vein Recognition
  • 7.1 Introduction
  • 7.2 Varying Acquisition Conditions-A Challenging Aspect in Research and Practical Applications
  • 7.3 Deployed Scanner Devices
  • 7.4 Finger Vein Acquisition Conditions Dataset.
  • 7.5 Finger Vein Recognition Toolchain and Evaluation Protocol
  • 7.6 Experimental Results Analysis
  • 7.7 Conclusion
  • References
  • 8 Improved CNN-Segmentation-Based Finger Vein Recognition Using Automatically Generated and Fused Training Labels
  • 8.1 Introduction
  • 8.2 Related Works
  • 8.2.1 Classical Finger Vein Recognition Techniques
  • 8.2.2 CNN-Based Finger Vein Recognition
  • 8.2.3 Automated Generation of CNN Training Data
  • 8.3 Finger Vein Pattern Extraction Using CNNs
  • 8.4 Training Label Generation and Setups
  • 8.5 Experimental Framework
  • 8.6 Results
  • 8.7 Discussion
  • 8.8 Conclusion
  • References
  • 9 Efficient Identification in Large-Scale Vein Recognition Systems Using Spectral Minutiae Representations
  • 9.1 Introduction
  • 9.1.1 Organisation
  • 9.1.2 Workload Reduction in Vein Identification Systems
  • 9.1.3 Concept Focus
  • 9.2 Workload Reduction Concepts
  • 9.2.1 Efficient Data Representation
  • 9.2.2 Serial Combination of SMR
  • 9.2.3 Indexing Methods
  • 9.2.4 Hardware Acceleration
  • 9.2.5 Fusion of Concepts
  • 9.3 Experiments
  • 9.3.1 Experimental Setup
  • 9.3.2 Performance Evaluation
  • 9.3.3 Experiments Overview
  • 9.4 Results
  • 9.4.1 Spectral Minutiae Representation
  • 9.4.2 Binary Spectral Minutiae Representation
  • 9.4.3 Serial Combination of SMR
  • 9.4.4 Indexing Methods
  • 9.4.5 Fusion of Concepts
  • 9.4.6 Discussion
  • 9.5 Summary
  • References
  • 10 Different Views on the Finger
  • - Score-Level Fusion in Multi-Perspective Finger Vein Recognition
  • 10.1 Introduction
  • 10.2 Multi-perspective Finger Vein Biometrics
  • 10.3 Multi-perspective Finger Vein Capture Device
  • 10.4 Multi-perspective Finger Vein Dataset
  • 10.5 Biometric Fusion
  • 10.5.1 Fusion in Finger Vein Recognition
  • 10.6 Experimental Analysis
  • 10.6.1 Finger Vein Dataset
  • 10.6.2 Finger Vein Recognition Tool chain.
  • 10.6.3 Score-Level Fusion Strategy and Toolkit
  • 10.6.4 Evaluation Protocol
  • 10.6.5 Single Perspective Performance Results
  • 10.6.6 Multi-perspective Fusion Results
  • 10.6.7 Multi-algorithm Fusion Results
  • 10.6.8 Combined Multi-perspective and Multi-algorithm Fusion
  • 10.6.9 Results Discussion
  • 10.7 Conclusion and Future Work
  • References
  • Part III Sclera and Retina Biometrics
  • 11 Retinal Vascular Characteristics
  • 11.1 Introduction
  • 11.1.1 Anatomy of the Retina
  • 11.1.2 History of Retinal Recognition
  • 11.1.3 Medical and Biometric Examination and Acquisition Tools
  • 11.1.4 Recognition Schemes
  • 11.1.5 Achieved Results Using Our Scheme
  • 11.1.6 Limitations
  • 11.2 Eye Diseases
  • 11.2.1 Automatic Detection of Druses and Exudates
  • 11.2.2 Testing
  • 11.3 Biometric Information Amounts in the Retina
  • 11.3.1 Theoretical Determination of Biometric Information in Retina
  • 11.3.2 Used Databases and Applications
  • 11.3.3 Results
  • 11.4 Synthetic Retinal Images
  • 11.4.1 Vascular Bed Layer
  • 11.4.2 Layers
  • 11.4.3 Background Layers
  • 11.4.4 Generating a Vascular Bed
  • 11.4.5 Testing
  • 11.4.6 Generating Synthetic Images Via Neural Network
  • References
  • 12 Vascular Biometric Graph Comparison: Theory and Performance
  • 12.1 Introduction
  • 12.2 The Biometric Graph
  • 12.2.1 The Biometric Graph
  • 12.2.2 Biometric Graph Extraction
  • 12.3 The Biometric Graph Comparison Algorithm
  • 12.3.1 BGR-Biometric Graph Registration
  • 12.3.2 BGC-Biometric Graph Comparison
  • 12.4 Results
  • 12.4.1 Vascular Databases
  • 12.4.2 Comparison of Graph Topology Across Databases
  • 12.4.3 Comparison of MCS Topology in BGC
  • 12.4.4 Comparison of BGC Performance Across Databases
  • 12.5 Anchors for a BGC Approach to Template Protection
  • 12.5.1 Dissimilarity Vector Templates for Biometric Graphs
  • 12.5.2 Anchors for Registration.
  • 12.5.3 The Search for Anchors.