|
|
|
|
LEADER |
03123nam a22004213i 4500 |
001 |
EBC5941331 |
003 |
MiAaPQ |
005 |
20231204023214.0 |
006 |
m o d | |
007 |
cr cnu|||||||| |
008 |
231204s2019 xx o ||||0 eng d |
020 |
|
|
|a 9783030286699
|q (electronic bk.)
|
020 |
|
|
|z 9783030286682
|
035 |
|
|
|a (MiAaPQ)EBC5941331
|
035 |
|
|
|a (Au-PeEL)EBL5941331
|
035 |
|
|
|a (OCoLC)1135670157
|
040 |
|
|
|a MiAaPQ
|b eng
|e rda
|e pn
|c MiAaPQ
|d MiAaPQ
|
050 |
|
4 |
|a G70.23
|
100 |
1 |
|
|a Jacob, Maria.
|
245 |
1 |
0 |
|a Forecasting and Assessing Risk of Individual Electricity Peaks.
|
250 |
|
|
|a 1st ed.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing AG,
|c 2019.
|
264 |
|
4 |
|c ©2020.
|
300 |
|
|
|a 1 online resource (108 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
490 |
1 |
|
|a Mathematics of Planet Earth Series
|
505 |
0 |
|
|a Intro -- Preface -- Contents -- Acronyms -- 1 Introduction -- 1.1 Forecasting and Challenges -- 1.2 Data -- 1.2.1 Irish Smart Meter Data -- 1.2.2 Thames Valley Vision Data -- 1.3 Outline and Objectives -- References -- 2 Short Term Load Forecasting -- 2.1 Forecasts -- 2.1.1 Linear Regression -- 2.1.2 Time Series Based Algorithms -- 2.1.3 Permutation Based Algorithms -- 2.1.4 Machine Learning Based Algorithms -- 2.2 Forecast Errors -- 2.2.1 Point Error Measures -- 2.2.2 Time Shifted Error Measures -- 2.3 Discussion -- References -- 3 Extreme Value Theory -- 3.1 Basic Definitions -- 3.2 Maximum of a Random Sample -- 3.3 Exceedances and Order Statistics -- 3.3.1 Exceedances -- 3.3.2 Asymptotic Distribution of Certain Order Statistics -- 3.4 Extended Regular Variation -- References -- 4 Extreme Value Statistics -- 4.1 Block Maxima and Peaks over Threshold Methods -- 4.2 Maximum Lq-Likelihood Estimation with the BM Method -- 4.2.1 Upper Endpoint Estimation -- 4.3 Estimating and Testing with the POT Method -- 4.3.1 Selection of the Max-Domain of Attraction -- 4.3.2 Testing for a Finite Upper Endpoint -- 4.3.3 Upper Endpoint Estimation -- 4.4 Non-identically Distributed Observations-Scedasis Function -- References -- 5 Case Study -- 5.1 Predicting Electricity Peaks on a Low Voltage Network -- 5.1.1 Short Term Load Forecasts -- 5.1.2 Forecast Uncertainty -- 5.1.3 Heteroscedasticity in Forecasts -- References -- Index.
|
588 |
|
|
|a Description based on publisher supplied metadata and other sources.
|
590 |
|
|
|a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Neves, Cláudia.
|
700 |
1 |
|
|a Vukadinović Greetham, Danica.
|
776 |
0 |
8 |
|i Print version:
|a Jacob, Maria
|t Forecasting and Assessing Risk of Individual Electricity Peaks
|d Cham : Springer International Publishing AG,c2019
|z 9783030286682
|
797 |
2 |
|
|a ProQuest (Firm)
|
830 |
|
0 |
|a Mathematics of Planet Earth Series
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=5941331
|z Click to View
|