Understanding Statistics and Experimental Design : How to Not Lie with Statistics.

Bibliographic Details
Main Author: Herzog, Michael H.
Other Authors: Francis, Gregory., Clarke, Aaron.
Format: eBook
Language:English
Published: Cham : Springer International Publishing AG, 2019.
Edition:1st ed.
Series:Learning Materials in Biosciences Series
Subjects:
Online Access:Click to View
LEADER 05724nam a22004453i 4500
001 EBC5920949
003 MiAaPQ
005 20231204023214.0
006 m o d |
007 cr cnu||||||||
008 231204s2019 xx o ||||0 eng d
020 |a 9783030034993  |q (electronic bk.) 
020 |z 9783030034986 
035 |a (MiAaPQ)EBC5920949 
035 |a (Au-PeEL)EBL5920949 
035 |a (OCoLC)1117773317 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a R850.A1-854 
100 1 |a Herzog, Michael H. 
245 1 0 |a Understanding Statistics and Experimental Design :  |b How to Not Lie with Statistics. 
250 |a 1st ed. 
264 1 |a Cham :  |b Springer International Publishing AG,  |c 2019. 
264 4 |c ©2019. 
300 |a 1 online resource (146 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Learning Materials in Biosciences Series 
505 0 |a Intro -- Preface -- Science, Society, and Statistics -- About This Book -- Contents -- Part I The Essentials of Statistics -- 1 Basic Probability Theory -- Contents -- 1.1 Confusions About Basic Probabilities: Conditional Probabilities -- 1.1.1 The Basic Scenario -- 1.1.2 A Second Test -- 1.1.3 One More Example: Guillain-Barré Syndrome -- 1.2 Confusions About Basic Probabilities: The Odds Ratio -- 1.2.1 Basics About Odds Ratios (OR) -- 1.2.2 Partial Information and the World of Disease -- References -- 2 Experimental Design and the Basics of Statistics: Signal Detection Theory (SDT) -- Contents -- 2.1 The Classic Scenario of SDT -- 2.2 SDT and the Percentage of Correct Responses -- 2.3 The Empirical d -- 3 The Core Concept of Statistics -- Contents -- 3.1 Another Way to Estimate the Signal-to-Noise Ratio -- 3.2 Undersampling -- 3.2.1 Sampling Distribution of a Mean -- 3.2.2 Comparing Means -- 3.2.3 The Type I and II Error -- 3.2.4 Type I Error: The p-Value is Related to a Criterion -- 3.2.5 Type II Error: Hits, Misses -- 3.3 Summary -- 3.4 An Example -- 3.5 Implications, Comments and Paradoxes -- Reference -- 4 Variations on the t-Test -- Contents -- 4.1 A Bit of Terminology -- 4.2 The Standard Approach: Null Hypothesis Testing -- 4.3 Other t-Tests -- 4.3.1 One-Sample t-Test -- 4.3.2 Dependent Samples t-Test -- 4.3.3 One-Tailed and Two-Tailed Tests -- 4.4 Assumptions and Violations of the t-Test -- 4.4.1 The Data Need to be Independent and Identically Distributed -- 4.4.2 Population Distributions are Gaussian Distributed -- 4.4.3 Ratio Scale Dependent Variable -- 4.4.4 Equal Population Variances -- 4.4.5 Fixed Sample Size -- 4.5 The Non-parametric Approach -- 4.6 The Essentials of Statistical Tests -- 4.7 What Comes Next? -- Part II The Multiple Testing Problem -- 5 The Multiple Testing Problem -- Contents -- 5.1 Independent Tests. 
505 8 |a 5.2 Dependent Tests -- 5.3 How Many Scientific Results Are Wrong? -- 6 ANOVA -- Contents -- 6.1 One-Way Independent Measures ANOVA -- 6.2 Logic of the ANOVA -- 6.3 What the ANOVA Does and Does Not Tell You: Post-Hoc Tests -- 6.4 Assumptions -- 6.5 Example Calculations for a One-Way Independent Measures ANOVA -- 6.5.1 Computation of the ANOVA -- 6.5.2 Post-Hoc Tests -- 6.6 Effect Size -- 6.7 Two-Way Independent Measures ANOVA -- 6.8 Repeated Measures ANOVA -- 7 Experimental Design: Model Fits, Power, and Complex Designs -- Contents -- 7.1 Model Fits -- 7.2 Power and Sample Size -- 7.2.1 Optimizing the Design -- 7.2.2 Computing Power -- 7.3 Power Challenges for Complex Designs -- 8 Correlation -- Contents -- 8.1 Covariance and Correlations -- 8.2 Hypothesis Testing with Correlations -- 8.3 Interpreting Correlations -- 8.4 Effect Sizes -- 8.5 Comparison to Model Fitting, ANOVA and t-Test -- 8.6 Assumptions and Caveats -- 8.7 Regression -- Part III Meta-analysis and the Science Crisis -- 9 Meta-analysis -- Contents -- 9.1 Standardized Effect Sizes -- 9.2 Meta-analysis -- Appendix -- Standardized Effect Sizes Beyond the Simple Case -- Extended Example of the Meta-analysis -- 10 Understanding Replication -- Contents -- 10.1 The Replication Crisis -- 10.2 Test for Excess Success (TES) -- 10.3 Excess Success from Publication Bias -- 10.4 Excess Success from Optional Stopping -- 10.5 Excess Success and Theoretical Claims -- Reference -- 11 Magnitude of Excess Success -- Contents -- 11.1 You Probably Have Trouble Detecting Bias -- 11.2 How Extensive Are These Problems? -- 11.3 What Is Going On? -- 11.3.1 Misunderstanding Replication -- 11.3.2 Publication Bias -- 11.3.3 Optional Stopping -- 11.3.4 Hypothesizing After the Results Are Known (HARKing) -- 11.3.5 Flexibility in Analyses -- 11.3.6 Misunderstanding Prediction. 
505 8 |a 11.3.7 Sloppiness and Selective Double Checking -- 12 Suggested Improvements and Challenges -- Contents -- 12.1 Should Every Experiment Be Published? -- 12.2 Preregistration -- 12.3 Alternative Statistical Analyses -- 12.4 The Role of Replication -- 12.5 A Focus on Mechanisms. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
700 1 |a Francis, Gregory. 
700 1 |a Clarke, Aaron. 
776 0 8 |i Print version:  |a Herzog, Michael H.  |t Understanding Statistics and Experimental Design  |d Cham : Springer International Publishing AG,c2019  |z 9783030034986 
797 2 |a ProQuest (Firm) 
830 0 |a Learning Materials in Biosciences Series 
856 4 0 |u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=5920949  |z Click to View