3D Recording and Interpretation for Maritime Archaeology.

Bibliographic Details
Main Author: McCarthy, John K.
Other Authors: Benjamin, Jonathan., Winton, Trevor., van Duivenvoorde, Wendy.
Format: eBook
Language:English
Published: Cham : Springer International Publishing AG, 2019.
Edition:1st ed.
Series:Coastal Research Library
Subjects:
Online Access:Click to View
Table of Contents:
  • Intro
  • Foreword
  • Acknowledgements
  • Contents
  • 1: The Rise of 3D in Maritime Archaeology
  • 1.1 Background
  • 1.2 The Importance of 3D for Maritime Archaeology
  • 1.3 Photogrammetry
  • 1.4 Beyond Survey
  • 1.5 Future Directions
  • 1.6 Standards
  • 1.7 Conclusions
  • References
  • 2: Camera Calibration Techniques for Accurate Measurement Underwater
  • 2.1 Introduction
  • 2.1.1 Historical Context
  • 2.1.2 Modern Systems and Applications
  • 2.1.3 Calibration and Accuracy
  • 2.2 Calibration Approaches
  • 2.2.1 Physical Correction
  • 2.2.2 Target Field Calibration
  • 2.3 Calibration Algorithms
  • 2.3.1 Calibration Parameters
  • 2.3.2 Absorption of Refraction Effects
  • 2.3.3 Geometric Correction of Refraction Effects
  • 2.3.4 Relative Orientation
  • 2.4 Calibration Reliability and Stability
  • 2.4.1 Reliability Factors
  • 2.4.2 Stability Factors
  • 2.5 Calibration and Validation Results
  • 2.5.1 Quality Indicators
  • 2.5.2 Validation Techniques
  • 2.5.3 Validation Results
  • 2.6 Conclusions
  • References
  • 3: Legacy Data in 3D: The Cape Andreas Survey (1969-1970) and Santo António de Tanná Expeditions (1978-1979)
  • 3.1 Introduction
  • 3.2 Cape Andreas Expeditions
  • 3.2.1 Wreck Sites with Ceramics
  • 3.2.2 Anchor Sites and Individual Anchors
  • 3.2.3 Reworking the Legacy Survey Data
  • 3.2.4 Reworking the Legacy Photographic Data
  • 3.2.5 Agisoft PhotoScan/Metashape
  • 3.3 The Santo António de Tanná Shipwreck
  • 3.3.1 Profile Recording
  • 3.3.2 Trilateration Survey
  • 3.3.3 Photographic Recording
  • 3.3.4 Agisoft PhotoScan/Metashape
  • 3.4 Conclusions
  • References
  • 4: Systematic Photogrammetric Recording of the Gnalić Shipwreck Hull Remains and Artefacts
  • 4.1 Introduction
  • 4.2 The Shipwreck of Gnalić
  • 4.2.1 History of Research
  • 4.2.2 The Ship
  • 4.2.2.1 Historical Documents.
  • 4.2.2.2 Archaeological Sources
  • 4.3 Systematic Photogrammetric Recording of Site and Finds
  • 4.3.1 Trial Campaign 2012
  • 4.3.2 Research Campaign 2013
  • 4.3.2.1 Control Points and Multi-image Coverage of the Site
  • 4.3.2.2 Image Processing, 3D Model, and Orthophoto Generation
  • 4.3.2.3 GIS Analysis
  • 4.3.3 Research Campaign 2014
  • 4.3.3.1 Local Coordinate System
  • 4.3.3.2 Composite Models
  • 4.3.3.3 GIS Analysis
  • 4.3.3.4 Points-Based Deviation Analysis
  • 4.3.4 Research Campaigns 2015 and 2016
  • 4.3.5 Mapping the Area of Archaeological Interest in 2017
  • 4.4 Timber and Artefact Recording
  • 4.5 Virtual Reality Application
  • 4.6 Automation of the Underwater Recording Process
  • 4.7 Conclusions
  • References
  • 5: Underwater Photogrammetric Recording at the Site of Anfeh, Lebanon
  • 5.1 Introduction
  • 5.1.1 Context of the Research
  • 5.1.2 Recorded Archaeological Cultural Heritage at Anfeh
  • 5.1.3 Methodology
  • 5.2 Underwater Photography
  • 5.2.1 Equipment
  • 5.2.2 Data Collection
  • 5.2.2.1 Data Collection with CanonG15
  • 5.2.2.2 Data Collection with Canon EOS 70D
  • 5.2.2.3 Data Collection with Sony DSC-RX100
  • 5.2.3 Image processing
  • 5.3 Multi-image Photogrammetry
  • 5.3.1 Orthophotos
  • 5.3.2 Export Adobe 3D PDFs
  • 5.4 Archaeological Survey Results
  • 5.4.1 Isolated Anchors
  • 5.4.2 The Groups of Anchors
  • 5.4.3 The Isolated Masonry Blocks
  • 5.4.4 The Masonry Blocks in Groups
  • 5.4.4.1 The North-Eastern Group
  • 5.4.4.2 The North-Western Group
  • 5.4.4.3 The South-Eastern Group
  • 5.5 Accuracy
  • 5.5.1 Accuracy of Georeferencing of the Survey
  • 5.5.2 Accuracy of the Photogrammetric Survey
  • 5.6 Challenges
  • 5.7 Discussion and Conclusions
  • References.
  • 6: Using Digital Visualization of Archival Sources to Enhance Archaeological Interpretation of the 'Life History' of Ships: The Case Study of HMCS/HMAS Protector
  • 6.1 Introduction
  • 6.2 Iconography and Maritime Archaeology
  • 6.3 A Means for Interpretation: 3D Modelling of Archival Images
  • 6.4 The Challenge of Digitally Modelling Archival Imagery
  • 6.5 A Partial Solution
  • 6.6 A Better Solution
  • 6.7 Applying 3D Archival Imagery to Interpret Protector's 'Life History'
  • 6.8 Discussion and Conclusions
  • References
  • 7: The Conservation and Management of Historic Vessels and the Utilization of 3D Data for Information Modelling
  • 7.1 Introduction
  • 7.2 Historic Vessel Conservation Management Practice
  • 7.3 3D Survey for Historic Vessels
  • 7.4 The Concept of Building Information Modelling (BIM)
  • 7.5 Use of BIM in the Heritage Sector
  • 7.6 HMS Victory (1765) and Information Modelling: A Case Study
  • 7.7 Development of the VIM
  • 7.8 Future Development of the VIM
  • 7.9 Lessons from the VIM
  • 7.10 Discussion
  • 7.11 Conclusions
  • References
  • 8: A Procedural Approach to Computer-Aided Modelling in Nautical Archaeology
  • 8.1 Introduction
  • 8.2 Computer-Aided Modelling in Archaeology
  • 8.3 Computer-Based Modelling in Archaeology
  • 8.4 Computer Models
  • 8.5 Procedural Modelling
  • 8.6 Methodology
  • 8.7 Approach
  • 8.8 Hull Components Description
  • 8.9 Conclusions and Future Work
  • References
  • 9: Deepwater Archaeological Survey: An Interdisciplinary and Complex Process
  • 9.1 Introduction
  • 9.1.1 The Archaeological Context
  • 9.2 Underwater Survey by Photogrammetry
  • 9.3 The Use of Ontologies
  • 9.3.1 In Underwater Archaeology
  • 9.3.2 Application in Nautical Archaeology
  • 9.4 Artefact Recognition: The Use of Deep Learning
  • 9.4.1 The Overall Process Using a Deep Learning Approach.
  • 9.4.2 The Proposed Convolution Neural Network
  • 9.4.3 Classification Results
  • 9.5 2D Representation: From Orthophoto to Metric Sketch
  • 9.5.1 Style Transfer to Sketch the Orthophoto
  • 9.5.2 From 3D Models to NPR: Non-photorealistic Rendering
  • 9.6 Virtual Reality for the General Public
  • 9.7 New 3D Technologies: The Plenoptic Approach
  • 9.8 Conclusions
  • References
  • 10: Quantifying Depth of Burial and Composition of Shallow Buried Archaeological Material: Integrated Sub-bottom Profiling and 3D Survey Approaches
  • 10.1 Introduction
  • 10.2 Non-invasive Geophysical Measurements
  • 10.3 Parametric SBP Surveys
  • 10.3.1 In Situ Experimental Burial Survey
  • 10.3.2 James Matthews Comparative In Situ Surveys
  • 10.4 Results and Discussion
  • 10.4.1 In Situ Experimental Burial Survey
  • 10.4.2 James Matthews Comparative In Situ Wreck-Site Surveys
  • 10.5 Future Surveys and Analyses
  • 10.6 Conclusions
  • References
  • 11: Resolving Dimensions: A Comparison Between ERT Imaging and 3D Modelling of the Barge Crowie, South Australia
  • 11.1 Introduction
  • 11.2 Crowie's History, Context, Significance and Construction
  • 11.2.1 History and Context
  • 11.2.2 Significance
  • 11.2.3 Construction
  • 11.3 Geophysical Modelling
  • 11.3.1 Electrical Resistivity Tomography (ERT)
  • 11.3.2 Data Acquisition and Modelling
  • 11.3.3 Data Processing and Results
  • 11.4 Visual Model
  • 11.5 Discussion
  • 11.6 Conclusions
  • References
  • 12: HMS Falmouth: 3D Visualization of a First World War Shipwreck
  • 12.1 Introduction
  • 12.2 Background
  • 12.3 Origins of the 3D Visualization of HMS Falmouth
  • 12.4 Data Acquisition and Processing of the Ship Model
  • 12.5 Publication of the 3D Visualization
  • 12.6 Development Potential of 3D Visualization for Further Research and Public Engagement
  • 12.7 Conclusions
  • References.
  • 13: Beacon Virtua: A Virtual Reality Simulation Detailing the Recent and Shipwreck History of Beacon Island, Western Australia
  • 13.1 Introduction
  • 13.2 Simulation
  • 13.2.1 Guided Tour
  • 13.2.2 Technical Features
  • 13.2.2.1 Island and Ocean
  • 13.2.2.2 Buildings and Jetties
  • 13.2.2.3 Graves and Coral Features
  • 13.2.2.4 360° Photo Bubbles
  • 13.2.2.5 Information Panels
  • 13.2.2.6 Text Menu
  • 13.2.2.7 Audio
  • 13.2.2.8 Birds
  • 13.2.2.9 Batavia Marker
  • 13.3 Target Platforms
  • 13.3.1 Desktop
  • 13.3.2 WebGL
  • 13.3.2.1 Head Mounted Displays
  • 13.3.2.2 Large-Scale Immersive Displays
  • 13.3.2.3 Exhibition Version
  • 13.3.2.4 Videos
  • 13.4 Multiple Target Platforms
  • 13.5 Navigation
  • 13.6 Dynamic Text
  • 13.7 3D User Interface
  • 13.8 Discussion
  • 13.9 Future Work and Conclusions
  • References
  • 14: Integrating Aerial and Underwater Data for Archaeology: Digital Maritime Landscapes in 3D
  • 14.1 Introduction
  • 14.2 Maritime Archaeological Theory and Integrated Cultural Landscapes
  • 14.3 Aerial Archaeology
  • 14.4 Technical Challenges: Shallow Water and Intertidal Zones
  • 14.5 Underwater Photogrammetry
  • 14.6 Digital Maritime Landscapes in 3D: Case Studies
  • 14.6.1 The Intertidal Zone
  • 14.6.2 Nearshore Historic Shipwrecks
  • 14.6.3 Deep Time and the Integrated Maritime Landscape
  • 14.7 3D GIS
  • 14.8 Digital 'Realities'
  • 14.9 Conclusions
  • References
  • Index.