Fundamentals of Clinical Data Science.

Bibliographic Details
Main Author: Kubben, Pieter.
Other Authors: Dumontier, Michel., Dekker, Andre.
Format: eBook
Language:English
Published: Cham : Springer International Publishing AG, 2019.
Edition:1st ed.
Subjects:
Online Access:Click to View
Table of Contents:
  • Intro
  • Introduction "Fundamentals of Clinical Data Science"
  • Contents
  • Part I: Data Collection
  • Chapter 1: Data Sources
  • 1.1 Data Sources
  • 1.1.1 Electronic Medical Records
  • 1.1.2 Other Medical Information Systems
  • 1.1.3 Mobile Apps
  • 1.1.4 Internet of Things and Big Data
  • 1.1.5 Social Media
  • 1.2 GDPR
  • 1.3 Data Types
  • 1.3.1 Tabular Data
  • 1.3.2 Time Series
  • 1.3.3 Natural Language
  • 1.3.4 Images and Videos
  • 1.4 Data Standards
  • 1.5 Conclusion
  • References
  • Chapter 2: Data at Scale
  • 2.1 Introduction
  • 2.2 'Big' Clinical Data: The Four 'Vs'
  • 2.3 Data Landscape
  • 2.4 Barriers to Big Data Exchange
  • 2.5 Conclusion
  • References
  • Chapter 3: Standards in Healthcare Data
  • 3.1 Introduction
  • 3.1.1 Data and Reality
  • 3.1.2 Desiderata for Clinical Data Standards
  • 3.1.3 Aspects of Terminology, Syntax, Semantics and Pragmatics
  • 3.1.4 Representational Artefacts for Standardising Clinical Data
  • 3.1.5 Quality and Usability of Standards
  • 3.2 Implementation of Standards
  • 3.2.1 Tools and Standards for Standards
  • 3.2.2 The eHealth Standards Roadmap
  • 3.2.2.1 Trust and Flow: The Basis of Well-Functioning Health Systems
  • 3.2.2.2 eStandards Compass to Respect Different Perspectives of Stakeholders
  • 3.2.2.3 eStandards Roadmap Components: Reusing eHealth Artefacts
  • 3.2.2.4 CGA Model: Co-creation, Governance and Alignment
  • 3.2.3 The eStandards Roadmap Methodology at Work
  • 3.3 Conclusion
  • References
  • (Web publications last accessed on June, 19th, 2018)
  • Chapter 4: Research Data Stewardship for Healthcare Professionals
  • 4.1 Data Stewardship: What, Why, How, and Who?
  • 4.1.1 Definitions
  • 4.1.2 Why?
  • 4.1.3 FAIR Principles
  • 4.1.4 Responsibilities
  • 4.2 Preparing a Study
  • 4.2.1 Study Design and Registration
  • 4.2.2 Re-using Existing Data
  • 4.2.3 Collaborating with Patients.
  • 4.2.4 Data Management Plan and Statistical Analysis Plan
  • 4.2.5 Describing the Operational Workflow
  • 4.2.6 Choosing File Formats
  • 4.2.7 Intellectual Property Rights
  • 4.2.8 Data Access
  • 4.3 Privacy and Autonomy
  • 4.3.1 Informed Consent
  • 4.3.2 Care and Research Environment
  • 4.3.3 Preparing Sensitive Data for Use
  • 4.4 Collecting Data
  • 4.4.1 Data Management Infrastructure
  • 4.4.2 Monitoring and Validation
  • 4.4.3 Metadata
  • 4.4.4 Security
  • 4.4.4.1 Access Policy
  • 4.4.4.2 Protecting Research Data
  • 4.5 Analysing Data
  • 4.5.1 Raw Data Preparation
  • 4.5.2 Analysis Plan
  • 4.6 Archiving Data
  • 4.6.1 Archiving: What and How?
  • 4.6.2 Archiving: Where?
  • 4.7 Sharing Data
  • 4.7.1 General Considerations
  • 4.7.1.1 Anonymity
  • 4.7.2 Sharing with Commercial Parties
  • 4.8 Conclusion
  • References
  • Chapter 5: The EU's General Data Protection Regulation (GDPR) in a Research Context
  • 5.1 Introduction
  • 5.2 Data Protection Law in the EU
  • 5.3 The GDPR
  • 5.4 Scope of Application of the GDPR
  • 5.5 Key Concepts of the GDPR
  • 5.6 The GDPR's Research Exemption
  • 5.7 Contentious Issues for Research Under the GDPR
  • 5.8 Checklists
  • 5.9 Conclusion
  • References
  • Part II: From Data to Model
  • Chapter 6: Preparing Data for Predictive Modelling
  • 6.1 Introduction
  • 6.2 Study Designs for Prediction Model Development
  • 6.2.1 Retrospective and Prospective Data
  • 6.2.2 Alternative Study Designs
  • 6.2.3 Patient Selection
  • 6.3 Sample Size Considerations
  • 6.3.1 Potential Predictor Variables and Model Overfitting
  • 6.3.2 Sample Size Rules-of-thumb
  • 6.4 Pre-processing Your Data
  • 6.4.1 Transforming Predictor Variables
  • 6.4.2 Categorizing Predictor Variables
  • 6.4.3 Visualizing Data
  • 6.5 Missing Data
  • 6.5.1 Why You Should Bother About Missing Data
  • 6.5.2 Handling Missing Data
  • References.
  • Chapter 7: Extracting Features from Time Series
  • 7.1 Time-Domain Processing
  • 7.1.1 Basic Magnitude Features and Time-Locked Averaging
  • 7.1.2 Template Matching
  • 7.1.3 Weighted Moving Averages: Frequency Filtering
  • 7.1.3.1 Weighted Moving Averages with Feedback
  • 7.2 Frequency-Domain Processing
  • 7.2.1 Band Power
  • 7.2.2 Spectral Analysis
  • 7.2.2.1 Fast Fourier Transform (FFT)
  • 7.2.2.2 Windowing
  • 7.2.2.3 Autoregressive (AR) Modeling
  • 7.3 Time-Frequency Processing: Wavelets
  • 7.4 Conclusion
  • References
  • Chapter 8: Prediction Modeling Methodology
  • 8.1 Statistical Hypothesis Testing
  • 8.1.1 Types of Error
  • 8.2 Creating a Prediction Model Using Regression Techniques
  • 8.2.1 Prediction Modeling Using Linear and Logistic Regression
  • 8.2.2 Software and Courses for Prediction Modeling
  • 8.2.3 A Short Word on Modeling Time-to-Event Outcomes
  • 8.3 Creating a Model That Performs Well Outside the Training Set
  • 8.3.1 The Bias-Variance Tradeoff
  • 8.3.2 Techniques for Making a General Model
  • 8.4 Model Performance Metrics
  • 8.4.1 General Performance Metrics
  • 8.4.2 Confusion Matrix
  • 8.4.3 Performance Metrics Derived from the Confusion Matrix
  • 8.4.4 Model Discrimination: Receiver Operating Characteristic and Area Under the Curve
  • 8.4.5 Model Calibration
  • 8.5 Validation of a Prediction Model
  • 8.5.1 The Importance of Splitting Training/Test Sets
  • 8.5.2 Techniques for Internal Validation
  • 8.5.3 External Validation
  • 8.6 Summary Remarks
  • 8.6.1 What Has Been Learnt
  • 8.6.2 Further Reading
  • References
  • Chapter 9: Diving Deeper into Models
  • 9.1 Introduction
  • 9.2 What Is Machine Learning?
  • 9.3 How Do We Use Machine Learning in Clinical Prediction Modelling?
  • 9.4 Supervised Algorithms
  • 9.5 Unsupervised Algorithms
  • 9.6 Semi-supervised Algorithms
  • 9.7 Supervised Algorithms.
  • 9.7.1 Support Vector Machines (SVMs)
  • 9.7.2 Random Forests (RF)
  • 9.7.3 Artificial Neural Networks (ANNs)
  • 9.8 Unsupervised Algorithms
  • 9.8.1 K-means
  • 9.8.2 Hierarchical Clustering
  • 9.9 Conclusion
  • References
  • Chapter 10: Reporting Standards and Critical Appraisal of Prediction Models
  • 10.1 Introduction
  • 10.1.1 Chapter Overview
  • 10.2 Prediction Modelling Studies
  • 10.2.1 Development
  • 10.2.2 Validation
  • 10.2.3 Updates
  • 10.2.4 Impact Assessment and Clinical Implementation
  • 10.3 Reporting Your Own Work
  • 10.3.1 Purpose of Transparent Reporting Guidelines
  • 10.3.2 Context
  • 10.3.3 Sample Size, Predictors and Predictor Selection
  • 10.3.4 Missing Data
  • 10.3.5 Model Specification and Predictive Performance
  • 10.3.6 Model Presentation, Ease of Interpretation and Intended Impact
  • 10.4 Critical Appraisal of Published Models
  • 10.4.1 Relevant Context of Prediction Modelling Studies
  • 10.4.2 Applicability and Risk of Bias
  • 10.4.3 Systematic Reviews and Meta-analyses
  • 10.5 Conclusion
  • References
  • Part III: From Model to Application
  • Chapter 11: Clinical Decision Support Systems
  • 11.1 Introduction on CDSS
  • 11.1.1 What Is CDSS?
  • 11.1.2 Why CDSS?
  • 11.1.3 Types of CDSS
  • 11.1.4 Medication Related CDSS
  • 11.2 Challenges for Implementing a CDSS
  • 11.2.1 High Adoption and Effective Use
  • 11.2.1.1 Alert Fatigue
  • 11.2.1.2 Triggers
  • 11.2.1.3 Context Factors
  • 11.2.2 Best Knowledge Available when Needed
  • 11.2.2.1 When Needed: Integration in Clinical Workflow
  • 11.2.2.2 Knowledge Is Available
  • 11.3 Best Knowledge &amp
  • Continuous Improvement of Knowledge and CDSS Methods
  • 11.3.1 CDSS Verification and Validation
  • 11.3.2 Development and Validation Strategy
  • 11.3.2.1 Strategy for Development and Validation of Clinical Rules
  • Step 1: Technical Validation.
  • Step 2: Therapeutic Retrospective Validation
  • Step 3: Pre-implementation Prospective Validation
  • Step 4: Post-implementation Prospective Validation
  • 11.3.2.2 Adaption in Practice
  • 11.4 Future Perspectives
  • References
  • Chapter 12: Mobile Apps
  • 12.1 Operating Systems
  • 12.2 Collecting Health Data
  • 12.3 Mobile Clinical Decision Support Systems
  • 12.4 Software as a Medical Device
  • 12.5 Conclusion
  • References
  • Chapter 13: Optimizing Care Processes with Operational Excellence &amp
  • Process Mining
  • 13.1 Introduction
  • 13.2 Care Process
  • 13.3 Operational Excellence
  • 13.3.1 Lean Thinking
  • 13.3.2 Six Sigma
  • 13.3.3 Lean Six Sigma
  • 13.4 Process Mining
  • 13.5 Sociotechnical Systems &amp
  • Leadership
  • 13.5.1 Sociotechnical Systems
  • 13.5.2 Leadership
  • 13.6 Conclusion
  • References
  • Chapter 14: Value-Based Health Care Supported by Data Science
  • 14.1 Introduction
  • 14.2 Measuring Outcomes
  • 14.3 Measuring Cost
  • 14.4 Creating Value Through Innovation
  • 14.5 Increasing Value in a Learning Health System
  • 14.6 Sociotechnical Considerations
  • 14.7 Further Considerations in Measuring Value
  • References
  • Index.