|
|
|
|
LEADER |
11236nam a22004813i 4500 |
001 |
EBC5606705 |
003 |
MiAaPQ |
005 |
20231204023214.0 |
006 |
m o d | |
007 |
cr cnu|||||||| |
008 |
231204s2018 xx o ||||0 eng d |
020 |
|
|
|a 9783319927985
|q (electronic bk.)
|
020 |
|
|
|z 9783319927978
|
035 |
|
|
|a (MiAaPQ)EBC5606705
|
035 |
|
|
|a (Au-PeEL)EBL5606705
|
035 |
|
|
|a (CaPaEBR)ebr11642118
|
035 |
|
|
|a (OCoLC)1108568217
|
040 |
|
|
|a MiAaPQ
|b eng
|e rda
|e pn
|c MiAaPQ
|d MiAaPQ
|
050 |
|
4 |
|a GE300-350
|
082 |
0 |
|
|a 577.55
|
100 |
1 |
|
|a Rosenstock, Todd S.
|
245 |
1 |
4 |
|a The Climate-Smart Agriculture Papers :
|b Investigating the Business of a Productive, Resilient and Low Emission Future.
|
250 |
|
|
|a 1st ed.
|
264 |
|
1 |
|a Cham :
|b Springer International Publishing AG,
|c 2018.
|
264 |
|
4 |
|c ©2019.
|
300 |
|
|
|a 1 online resource (314 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Intro -- Acknowledgments -- Contents -- Chapter 1: An Introduction to the Climate-Smart Agriculture Papers -- 1.1 Tracking Progress -- 1.2 Overview of the Chapters -- 1.3 Implications for Development -- References -- Part I: Climate Risks and Impacts -- Chapter 2: Future Climate Projections in Africa: Where Are We Headed? -- 2.1 Introduction -- 2.2 Past and Present: Evidence Africa's Climate Has Already Changed -- 2.3 Future: Climate Model Projections for Africa -- 2.4 Implications for Development -- 2.4.1 Adapting African Agriculture to Climate Change -- 2.4.2 Collecting and Using Climate Data -- References -- Chapter 3: Climate Change and Infectious Livestock Diseases: The Case of Rift Valley Fever and Tick-Borne Diseases -- 3.1 Background -- 3.2 Case Studies -- 3.2.1 Rift Valley Fever -- 3.2.1.1 Drivers -- 3.2.1.2 Climate Change and RVF -- 3.2.2 Ticks and Tick-Borne Diseases (TBDs) -- 3.2.3 Inferences from the Case Studies -- 3.3 Mitigations and Adaptations -- 3.4 Conclusions and Implications for Development -- References -- Chapter 4: Large Scale Crop Suitability Assessment Under Future Climate Using the Ecocrop Model: The Case of Six Provinces in Angola's Planalto Region -- 4.1 Introduction -- 4.2 Materials and Methods -- 4.2.1 Sources of Climate Data -- 4.2.2 Analysis of Crop Suitability -- 4.3 Results and Discussion -- 4.3.1 Projected Climate Changes -- 4.3.2 Effects of Climate Change on Distribution of Crop Suitability -- 4.3.2.1 Cassava -- 4.3.2.2 Maize -- 4.4 Implications for Development -- References -- Chapter 5: Understanding the Role of Soils and Management on Crops in the Face of Climate Uncertainty in Zimbabwe: A Sensitivity Analysis -- 5.1 Introduction -- 5.2 Methods -- 5.2.1 Study Site -- 5.2.2 Climate Data -- 5.2.3 Crop Model Setup and Sensitivity Tests -- 5.3 Results.
|
505 |
8 |
|
|a 5.3.1 Maize Response to CO2, Temperature, Rainfall and Fertilizer -- 5.3.2 Groundnuts Response to CO2, Temperature, Rainfall and Fertilizer -- 5.3.3 Combined Effects of Climate Factors on Maize -- 5.3.4 Combined Effects of Climate Factors on Groundnuts -- 5.4 Discussion -- 5.4.1 Maize and Groundnut Response to CO2, Temperature, Rainfall and Fertilizer -- 5.4.2 Combined Effects of Climate Factors on Maize and Groundnuts -- 5.5 Implications for Development -- References -- Part II: Adaptive Germplasm Delivery Systems -- Chapter 6: Role and Challenges of the Private Seed Sector in Developing and Disseminating Climate-Smart Crop Varieties in Eastern and Southern Africa -- 6.1 Introduction -- 6.2 The Emerging Private Seed Sector in ESA -- 6.3 Low Rates of Variety Turnover and Agricultural Research and Development Investment in ESA -- 6.4 Driving Genetic Gain for CS Traits Through Public-Private Partnerships (PPP) -- 6.5 Enhancing the Delivery of CS Maize Varieties: Harmonising Seed Laws and Promoting Adoption -- 6.6 Implications for development -- References -- Chapter 7: Fast-Tracking the Development and Dissemination of a Drought-Tolerant Maize Variety in Ethiopia in Response to the Risks of Climate Change -- 7.1 Introduction -- 7.2 Climate Change and Drought in Ethiopia -- 7.3 Research Efforts to Develop New Hybrids -- 7.3.1 Release and Adoption of BH661 -- 7.3.2 How Were Farmers Convinced About the Superior Performance of BH661? -- 7.4 Outcome of the Replacement Activities -- 7.5 Conclusion and Implications for Development -- References -- Chapter 8: Access to Early Generation Seed: Obstacles for Delivery of Climate-Smart Varieties -- 8.1 Introduction -- 8.2 Brief Overview of Seed Systems and Related Interventions -- 8.3 EGS Case Studies -- 8.3.1 Case Study 1: Successful Partnerships for Highland Bean Varieties.
|
505 |
8 |
|
|a 8.3.2 Case Study 2: The EGS Hurdle for a Bean Variety High in Iron and Zinc -- 8.4 Possible Solutions and Implications for Development -- References -- Chapter 9: Climate Change and Seed Systems of Roots, Tubers and Bananas: The Cases of Potato in Kenya and Sweetpotato in Mozambique -- 9.1 The Significance of RTB Crops for Food and Income Security Under Climate Change -- 9.2 Challenges to RTB Seed Systems -- 9.3 Case Studies -- 9.3.1 Improving Access to Quality Seed of Climate-Smart Potato Varieties in Kenya -- 9.3.1.1 Climate-Smart Varieties -- 9.3.1.2 Complexity of the Seed Potato Production System -- 9.3.1.3 Diversifying Seed Potato Systems -- 9.3.1.4 Using Apical Cuttings to Boost Potato Seed Systems -- 9.3.1.5 Productivity Obtained by Informal Seed Multipliers -- 9.3.2 Adapting Sweetpotato Varieties and Seed Systems Combatting Drought and Food Insecurity in Mozambique -- 9.4 Implications for Development -- References -- Chapter 10: Delivering Perennial New and Orphan Crops for Resilient and Nutritious Farming Systems -- 10.1 Introduction -- 10.2 Can Perennial NOC Contribute to the Resilience of Eastern and Southern African Food Systems? -- 10.2.1 Perennial NOC Foods and Crop Portfolios -- 10.3 Perennial Foods and FAOSTAT Yield Stabilities -- 10.4 What Measures Are Needed to Drive Perennial NOC Integration into Eastern and Southern African Food Systems? -- 10.5 Implications for Development -- References -- Chapter 11: Generating Farm-Validated Variety Recommendations for Climate Adaptation -- 11.1 Introduction -- 11.2 Analyzing Data from On-Farm Trials Using the Tricot Approach -- 11.3 Deriving Variety Recommendations from On-Farm Trials -- 11.4 Contribution of the Tricot Approach -- 11.5 Implications for Development -- References -- Part III: The Climate-Smartness of Technologies.
|
505 |
8 |
|
|a Chapter 12: What Is the Evidence Base for Climate-Smart Agriculture in East and Southern Africa? A Systematic Map -- 12.1 Investments in CSA -- 12.2 A Systematic Approach -- 12.3 The Evidence -- 12.4 Implications for Practitioners -- References -- Chapter 13: Understanding the Multidimensionality of Climate-Smartness: Examples from Agroforestry in Tanzania -- 13.1 Introduction -- 13.2 Production and Mitigation Benefits of Agroforestry and Intercropping Practices in Dodoma -- 13.3 Production and Resilience Benefits of Cassava-Based Intercropping Practices in Tabora -- 13.4 Implications for Development -- References -- Chapter 14: A Participatory Approach to Assessing the Climate-Smartness of Agricultural Interventions: The Lushoto Case -- 14.1 Introduction -- 14.2 Materials and Methods -- 14.3 Results and Discussion -- 14.3.1 Suitable Farm-Level Indicators -- 14.3.2 Importance of Indicators in the Food Security and Adaptation Pillars -- 14.3.3 Performance of CSA Interventions Across Two Pillars -- 14.4 Implication for Development -- 14.5 Conclusion -- References -- Chapter 15: Household Welfare Effects of Stress-Tolerant Varieties in Northern Uganda -- 15.1 Introduction -- 15.2 Data and Methods -- 15.2.1 Description of Variables -- 15.3 Results of Econometric Analysis -- 15.3.1 Determinants for Adoption of Improved Varieties -- 15.3.2 Estimating the Impact of Improved Varieties Adoption Decision -- 15.3.3 Sensitivity Tests for Estimated Average Treatment Effects -- 15.4 Implications for Development -- References -- Chapter 16: Considering Religion and Tradition in Climate Smart Agriculture: Insights from Namibia -- 16.1 Introduction -- 16.2 Cultural Barriers to CSA Adoption -- 16.2.1 Religious Faith and Belief -- 16.2.2 Symbolic Significance of Agricultural Practice -- 16.2.3 Traditional Agricultural Knowledge.
|
505 |
8 |
|
|a 16.3 Working with Religious and Traditional Belief Systems to Enable Adaptation -- 16.3.1 Positioning Religious and Traditional Leaders as 'Champions' -- 16.3.2 Integrating Traditional and Scientific Knowledge -- 16.3.3 Changing the Framing of CSA -- 16.4 Implications for Development -- References -- Part IV: Climate-Resilient Value Chains -- Chapter 17: The Role of Farmers' Entrepreneurial Orientation on Agricultural Innovations in Ugandan Multi-Stakeholder Platform -- 17.1 Introduction -- 17.2 Methods -- 17.3 Findings -- 17.4 Implications for Development -- Appendix 1 -- Appendix 2 -- Appendix 3 -- References -- Chapter 18: Shea Butter: A Pro-Poor, Pro-Female Route to Increased Income -- 18.1 Introduction -- 18.2 Methods -- 18.3 Results -- 18.3.1 Household Livelihoods and Farm Characteristics -- 18.3.2 The Impacts on Household Welfare Indicators -- 18.3.3 Shea Derived Incomes -- 18.4 What Factors Led to the Success of This Project? -- 18.5 Implications for Development -- References -- Chapter 19: One Size Does Not Fit All: Private-Sector Perspectives on Climate Change, Agriculture and Adaptation -- 19.1 Introduction -- 19.2 Provide Granular Data to Assist in Risk Management -- 19.3 Tailor Information to Companies' Position in Supply Chain -- 19.4 Make the Business Case for CSA -- 19.5 Implications for Development -- References -- Chapter 20: Climate-Smart Agricultural Value Chains: Risks and Perspectives -- 20.1 Introduction -- 20.2 Methodology -- 20.3 Results -- 20.3.1 Effects of Climate Change on Value Chains -- 20.3.2 Options for Adapting Value Chains to Climate Change -- 20.3.3 Impediments to Adaptation at the Local Level -- 20.4 Implications for Development -- References -- Chapter 21: Nutrition-Sensitive Value Chain Development in a Changing Climate -- 21.1 Introduction -- 21.2 Nutrition-Sensitive Value Chains.
|
505 |
8 |
|
|a 21.3 Value Chains for Nutritious Foods: Lessons from the Field.
|
588 |
|
|
|a Description based on publisher supplied metadata and other sources.
|
590 |
|
|
|a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
|
655 |
|
4 |
|a Electronic books.
|
700 |
1 |
|
|a Nowak, Andreea.
|
700 |
1 |
|
|a Girvetz, Evan.
|
776 |
0 |
8 |
|i Print version:
|a Rosenstock, Todd S.
|t The Climate-Smart Agriculture Papers
|d Cham : Springer International Publishing AG,c2018
|z 9783319927978
|
797 |
2 |
|
|a ProQuest (Firm)
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=5606705
|z Click to View
|