Measure Theory in Non-Smooth Spaces.

Bibliographic Details
Main Author: Gigli, Nicola.
Format: eBook
Language:English
Published: Warschau/Berlin : Walter de Gruyter GmbH, 2017.
Edition:1st ed.
Subjects:
Online Access:Click to View
LEADER 02009nam a22003613i 4500
001 EBC5494949
003 MiAaPQ
005 20231204023214.0
006 m o d |
007 cr cnu||||||||
008 231204s2017 xx o ||||0 eng d
020 |a 9783110550832  |q (electronic bk.) 
020 |z 9783110550825 
035 |a (MiAaPQ)EBC5494949 
035 |a (Au-PeEL)EBL5494949 
035 |a (OCoLC)1088313218 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
100 1 |a Gigli, Nicola. 
245 1 0 |a Measure Theory in Non-Smooth Spaces. 
250 |a 1st ed. 
264 1 |a Warschau/Berlin :  |b Walter de Gruyter GmbH,  |c 2017. 
264 4 |c ©2017. 
300 |a 1 online resource (346 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Intro -- Contents -- New stability results for sequences of metric measure spaces with uniform Ricci bounds from below -- Surface measures in infinite-dimensional spaces -- An Overview of L&lt -- sup&gt -- 1&lt -- /sup&gt -- optimal transportation on metric measure spaces -- On a conjecture of Cheeger -- The magnitude of a metric space: from category theory to geometric measure theory -- On the convexity of the entropy along entropic interpolations -- Brief survey ∞-Poincaré inequality and existence ∞-harmonic functions -- Scalar Curvature and Intrinsic Flat Convergence. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Gigli, Nicola  |t Measure Theory in Non-Smooth Spaces  |d Warschau/Berlin : Walter de Gruyter GmbH,c2017  |z 9783110550825 
797 2 |a ProQuest (Firm) 
856 4 0 |u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=5494949  |z Click to View