Model-Based Hypothesis Testing in Biomedicine : How Systems Biology Can Drive the Growth of Scientific Knowledge.

Bibliographic Details
Main Author: Johansson, Rikard.
Format: eBook
Language:English
Published: Linköping : Linkopings Universitet, 2017.
Edition:1st ed.
Series:Linköping Studies in Science and Technology. Dissertations Series
Subjects:
Online Access:Click to View
LEADER 04977nam a22003973i 4500
001 EBC5097183
003 MiAaPQ
005 20240729202202.0
006 m o d |
007 cr cnu||||||||
008 240729s2017 xx o ||||0 eng d
020 |a 9789176854570  |q (electronic bk.) 
035 |a (MiAaPQ)EBC5097183 
035 |a (Au-PeEL)EBL5097183 
035 |a (CaPaEBR)ebr11451827 
035 |a (OCoLC)1006407533 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
100 1 |a Johansson, Rikard. 
245 1 0 |a Model-Based Hypothesis Testing in Biomedicine :  |b How Systems Biology Can Drive the Growth of Scientific Knowledge. 
250 |a 1st ed. 
264 1 |a Linköping :  |b Linkopings Universitet,  |c 2017. 
264 4 |c {copy}2017. 
300 |a 1 online resource (114 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
490 1 |a Linköping Studies in Science and Technology. Dissertations Series ;  |v v.1877 
505 0 |a Intro -- Supervisor -- Co-Supervisors -- Faculty Opponent -- Abstract -- Svensk sammanfattning -- Publications and Manuscripts -- Abbreviations -- Mathematical symbols -- Table of Contents -- 1 Introduction -- 1.1 Complexity -- 1.2 The Book of Life: from DNA to protein -- 1.3 Omics -- 1.4 Personalized medicine -- 1.5 Systems biology -- 1.6 Aim and scope -- 1.7 Outline of thesis -- 2 Science Through Hypothesis Testing -- 2.1 Facts, hypotheses, and theories -- 2.2 Verifications and falsifications -- 3 Mathematical Modeling -- 3.1 Modelling definitions and concepts -- 3.1.1 Model properties -- 3.1.2 Modeling frameworks -- 3.2 Ordinary differential equations -- 3.3 Black box modeling and regression models -- 3.4 Networks and data-driven modeling -- 3.5 Partial differential equations -- 3.6 Stochastic modeling -- 4 ODE Modeling Methods -- 4.1 The minimal model and modeling cycle approach -- 4.2 Model construction -- 4.2.1 Hypothesis and data -- 4.2.2 Scope and simplifications -- 4.2.3 Reaction kinetics and measurement equations -- 4.2.4 Units -- 4.3 Model simulation -- 4.3.1 Runge-Kutta, forward Euler, and tolerance -- 4.3.2 Adams-Bashforth -- 4.3.3 Adams-Moulton -- 4.3.4 Backward Differentiation Formulas -- 4.3.5 On Stiffness and software -- 4.4 Parameter estimation and goodness of fit -- 4.4.1 Objective function -- 4.4.2 Cost landscape -- 4.4.3 Local optimization -- Steepest descent, Newton, and quasi-Newton -- Nelder-Mead downhill simplex -- 4.4.4 Global Optimization -- Multi-start optimization -- Simulated annealing -- Evolutionary algorithms -- Particle swarm optimization -- 4.5 Statistical assessment of goodness of fit -- 4.5.1 The χ2-test -- 4.5.2 Whiteness, run, and Durbin-Watson test -- 4.5.3 Interpretation of rejections -- 4.6 Uncertainty analysis -- 4.6.1 Model uncertainty -- 4.6.2 Parameter uncertainty -- Sensitivity analysis. 
505 8 |a Fisher information matrix -- Identifiability and the profile likelihood -- 4.6.3 Prediction uncertainty -- 4.7 Testing predictions -- 4.7.1 Core predictions -- 4.7.2 Validation data -- 4.7.3 Overfitting -- 4.8 Model selection -- 4.8.1 Experimental design and testing -- 4.8.2 Ranking methods and tests -- Information criterion -- The likelihood ratio test -- 4.9 Bootstrapping and empirical distributions -- 5 Model Systems -- 5.1 Insulin signaling system in human adipocytes -- 5.2 Cell-to-cell variability in yeast -- 5.3 Facilitation in murine nerve cells -- 6 Results -- 6.1 Modeling of dominant negative inhibition data -- 6.2 Quantification of nuclear transport rates in yeast cells -- 6.3 Quantitative modeling of facilitation in pyramidal neurons -- 6.4 A novel method for hypothesis testing using bootstrapping -- 7 Concluding Remarks -- 7.1 Summary of results and conclusions -- 7.1.1 DN data should be analyzed using mathematical modeling -- 7.1.2 A single-cell modeling method for quantification of nuclear transport -- 7.1.3 Facilitation can be explained by a single mechanism -- 7.1.4 A novel 2D bootstrap approach for hypothesis testing -- 7.2 Relevancy of mathematical modeling -- 7.2.1 Hypothesis testing -- 7.2.2 Mechanistic understanding -- 7.2.3 Design of experiments -- 7.2.4 Data analysis -- 7.2.5 Healthcare -- 7.3 Outlook -- Acknowledgements -- References -- Endnotes. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2024. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
776 0 8 |i Print version:  |a Johansson, Rikard  |t Model-Based Hypothesis Testing in Biomedicine  |d Linköping : Linkopings Universitet,c2017 
797 2 |a ProQuest (Firm) 
830 0 |a Linköping Studies in Science and Technology. Dissertations Series 
856 4 0 |u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=5097183  |z Click to View