Fighter Aircraft Maneuver Limiting Using MPC : Theory and Application.

Bibliographic Details
Main Author: Simon, Daniel.
Format: eBook
Language:English
Published: Linköping : Linkopings Universitet, 2017.
Edition:1st ed.
Series:Linköping Studies in Science and Technology. Dissertations Series
Subjects:
Online Access:Click to View
Table of Contents:
  • Intro
  • Abstract
  • Populärvetenskaplig sammanfattning
  • Acknowledgments
  • Contents
  • Notation
  • 1 Introduction
  • 1.1 Background and research motivation
  • 1.2 Previous research
  • 1.3 Publications and main contributions
  • 1.4 Thesis outline
  • I Theory
  • 2 Background on optimization and polytopic geometry
  • 2.1 Optimization
  • 2.1.1 Convex optimization
  • 2.1.2 Duality
  • 2.1.3 Nonconvex optimization
  • 2.1.4 Mixed integer optimization
  • 2.2 Convex polytopic geometry
  • 3 Aircraft flight dynamics and flight control design
  • 3.1 The nonlinear dynamics
  • 3.2 The linearized dynamics
  • 3.3 Fighter aircraft flight control law design
  • 3.4 The ARES and ADMIRE models
  • 3.4.1 ARES baseline LQ controller
  • 4 Introduction to model predictive control
  • 4.1 Introduction
  • 4.2 Linear MPC
  • 4.2.1 Stability
  • 4.2.2 Reference tracking
  • 4.2.3 Integral control
  • 4.2.4 Slack variables
  • 4.2.5 The explicit solution
  • 4.3 Nonlinear MPC
  • 5 A low complexity reference tracking MPC algorithm
  • 5.2 The proposed controller
  • 5.2.1 Vertex enumeration reformulation
  • 5.2.2 Dual formulation of terminal set constraints
  • 5.2.3 The QP formulation
  • 5.2.4 Stability and feasibility of the proposed algorithm
  • 5.3 Examples from the aeronautical industry
  • 5.3.1 Maneuver limitations on a fighter aircraft
  • 5.3.2 Nonlinear aircraft performance
  • 5.3.3 Helicopter flight envelope protection
  • 6 Method for guaranteed stability and recursive feasibility in nonlinear MPC
  • 6.1 Introduction
  • 6.1.1 Feedback linearization
  • 6.2 The proposed algorithm
  • 6.2.1 Nonlinear constraint approximations
  • 6.2.2 MPC receding horizon setup
  • 6.3 Examples
  • 7 Testing stability and robustness of MPC controllers
  • 7.1 Introduction
  • 7.2 The MILP stability test
  • 7.2.1 Exploiting structure in the MILP
  • 7.2.2 A sufficient but not necessary condition.
  • 7.2.3 Computational complexity of the stability test
  • 7.2.4 Move blocking and no stabilizing constraints
  • 7.3 Testing for robust stability
  • 7.3.2 The robust stability condition
  • 7.3.3 Reformulation into a MILP
  • 7.3.4 Robust stability of an agile fighter aircraft
  • II Application
  • 8 Industrial implementation of an MPC controller for a fighter aircraft
  • 8.1 Introduction
  • 8.2 The MPC controller structure
  • 8.3 Tuning of the MPC controller
  • 8.4 Simulator testing
  • 9 Aircraft maneuver limiting using command governors
  • 9.1 Introduction
  • 9.2 Reference and command governors
  • 9.3 Command governor design
  • 9.3.1 N-step prediction approach
  • 9.3.2 Selection of discretization technique
  • 9.3.3 Model error correction term
  • 9.3.4 Selection of objective function and parameterization of the reference
  • 9.4 Simulation results
  • 10 Conclusions and future work
  • Bibliography.