|
|
|
|
LEADER |
05687nam a22003853i 4500 |
001 |
EBC30605736 |
003 |
MiAaPQ |
005 |
20231204023231.0 |
006 |
m o d | |
007 |
cr cnu|||||||| |
008 |
231204s2023 xx o ||||0 ger d |
020 |
|
|
|a 9783658417512
|q (electronic bk.)
|
020 |
|
|
|z 9783658417505
|
035 |
|
|
|a (MiAaPQ)EBC30605736
|
035 |
|
|
|a (Au-PeEL)EBL30605736
|
040 |
|
|
|a MiAaPQ
|b eng
|e rda
|e pn
|c MiAaPQ
|d MiAaPQ
|
050 |
|
4 |
|a Q325.5-.7
|
100 |
1 |
|
|a Lang, Sebastian.
|
245 |
1 |
0 |
|a Methoden des Bestärkenden Lernens Für Die Produktionsablaufplanung.
|
250 |
|
|
|a 1st ed.
|
264 |
|
1 |
|a Wiesbaden :
|b Springer Vieweg. in Springer Fachmedien Wiesbaden GmbH,
|c 2023.
|
264 |
|
4 |
|c {copy}2023.
|
300 |
|
|
|a 1 online resource (314 pages)
|
336 |
|
|
|a text
|b txt
|2 rdacontent
|
337 |
|
|
|a computer
|b c
|2 rdamedia
|
338 |
|
|
|a online resource
|b cr
|2 rdacarrier
|
505 |
0 |
|
|a Intro -- Danksagung -- Kurzfassung -- Inhaltsverzeichnis -- Abbildungsverzeichnis -- Tabellenverzeichnis -- Abkürzungsverzeichnis -- Mathematische Notation -- Für Probleme der Produktionsablaufplanung -- Für gradientenabhängiges bestärkendes Lernen -- Für gradientenfreies bestärkendes Lernen -- Statistische Kenngrößen -- 1 Einleitung -- 1.1 Motivation und Problemstellung -- 1.2 Zielstellung der Arbeit und Forschungsfragen -- 1.3 Forschungsmethodik und Aufbau der Arbeit -- 2 Grundlagen der Produktionsablaufplanung -- 2.1 Begriffsbestimmung und thematische Abgrenzung -- 2.2 Prozess der Produktionsablaufplanung -- 2.3 Mathematische Optimierung der Produktionsablaufplanung -- 2.3.1 Mathematische Formalisierung -- 2.3.2 Modellbildung -- 2.3.3 Konventionelle Lösungsverfahren -- 3 Grundlagen des Bestärkenden Lernens -- 3.1 Einordnung in die künstliche Intelligenz und in das maschinelle Lernen -- 3.1.1 Überwachtes Lernen als angrenzendes Paradigma -- 3.1.2 Unüberwachten Lernens als angrenzendes Paradigma -- 3.2 Grundprinzip und Taxonomie des bestärkenden Lernens -- 3.3 Gradientenabhängiges bestärkendes Lernen -- 3.3.1 Markov-Entscheidungsproblem -- 3.3.2 Nutzenfunktion -- 3.3.3 Aktionsnutzen-bewertende Verfahren -- 3.3.4 Entscheidungspolitik-approximierende Verfahren -- 3.3.5 Actor-Critic-Verfahren -- 3.4 Gradientenfreies bestärkendes Lernen -- 3.4.1 Modellsuchende und parameteroptimierende Verfahren -- 3.4.2 Hybride Verfahren - NeuroEvolution of Augmenting Topologies -- 4 Stand der Wissenschaft und Technik: Bestärkendes Lernen in der Produktionsablaufplanung -- 4.1 Gradientenabhängige Verfahren für die Produktionsablaufplanung -- 4.1.1 Agentenbasierte Auswahl von Prioritätsregeln -- 4.1.2 Agentenbasierte Ressourcenbelegungsplanung -- 4.1.3 Agentenbasierte Reihenfolgeplanung -- 4.1.4 Agentenbasierte Losbildung.
|
505 |
8 |
|
|a 4.1.5 Agentenbasiertes Reparieren von ungültigen Ablaufplänen -- 4.2 Gradientenfreie Verfahren für die Ablaufplanung im Allgemeinen -- 4.2.1 Einsatz der Kreuzentropie-Methode in der Ablaufplanung -- 4.2.2 Einsatz von Bayes'scher Optimierung in der Ablaufplanung -- 4.2.3 Einsatz von Neuro-Evolution in der Ablaufplanung -- 4.3 Zusammenfassung und Diskussion der Forschungslücke -- 5 Eine Methode zum Einsatz von bestärkenden Lernverfahren für die Produktionsablaufplanung -- 5.1 Ausgangssituation, Problemstellung und Anforderungsdefinition -- 5.2 Von der Produktionsablaufplanung zur agentenbasierten Produktionsablaufsteuerung - Prozessmodell und Funktionsprinzip -- 5.2.1 Agentenbasierte Ressourcenbelegungsplanung -- 5.2.2 Agentenbasierte Reihenfolgeplanung und Losbildung -- 5.3 Projektierung und Entwicklung von agentenbasierten Produktionsablaufsteuerungen -- 5.3.1 Entwurf von Agentenumgebungen -- 5.3.2 Definition von maschinellen Lernaufgaben und Gestaltung von Agenten -- 5.3.3 Integration und Inbetriebnahme von Agenten und Agentenumgebungen -- 5.3.4 Auswahl und Implementierung von bestärkenden Lernverfahren -- 5.3.5 Gestaltung von Belohnungsfunktionen -- 5.3.6 Training von Agenten -- 5.4 Zusammenfassung der Methode -- 6 Evaluation der entwickelten Methode -- 6.1 Flexible-Job-Shop-Problem mit flexibler Operationsplanung -- 6.1.1 Problembeschreibung -- 6.1.2 Anwendung des DQN-Algorithmus zur Lösung des Problems -- 6.1.3 Diskussion der Ergebnisse -- 6.1.4 Erweiterung des Problems um einen dynamischen Auftragshorizont -- 6.2 Dynamisches Parallel-Maschinen-Problem mit familienabhängigen Rüstzeiten und ressourcenabhängigen Bearbeitungsgeschwindigkeiten -- 6.2.1 Problembeschreibung -- 6.2.2 Anwendung des PPO-Algorithmus zur Lösung des Problems -- 6.2.3 Diskussion der Ergebnisse -- 6.3 Zweistufiges Hybrid-Flow-Shop-Problem mit familienabhängigen Rüstzeiten.
|
505 |
8 |
|
|a 6.3.1 Problembeschreibung -- 6.3.2 Anwendung des A2C-Algorithmus zur Lösung des Problems -- 6.3.3 Anwendung des NEAT-Algorithmus zur Lösung des Problems -- 6.3.4 Vergleich mit anderen Lösungsverfahren -- 7 Schlussbetrachtung -- 7.1 Zusammenfassung und Diskussion -- 7.2 Ausblick -- Literaturverzeichnis.
|
588 |
|
|
|a Description based on publisher supplied metadata and other sources.
|
590 |
|
|
|a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.
|
655 |
|
4 |
|a Electronic books.
|
776 |
0 |
8 |
|i Print version:
|a Lang, Sebastian
|t Methoden des Bestärkenden Lernens Für Die Produktionsablaufplanung
|d Wiesbaden : Springer Vieweg. in Springer Fachmedien Wiesbaden GmbH,c2023
|z 9783658417505
|
797 |
2 |
|
|a ProQuest (Firm)
|
856 |
4 |
0 |
|u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=30605736
|z Click to View
|