Representation Learning for Natural Language Processing.

Bibliographic Details
Main Author: Liu, Zhiyuan.
Other Authors: Lin, Yankai., Sun, Maosong.
Format: eBook
Language:English
Published: Singapore : Springer Singapore Pte. Limited, 2020.
Edition:1st ed.
Subjects:
Online Access:Click to View
LEADER 06908nam a22004093i 4500
001 EBC30592734
003 MiAaPQ
005 20231204023231.0
006 m o d |
007 cr cnu||||||||
008 231204s2020 xx o ||||0 eng d
020 |a 9789811555732  |q (electronic bk.) 
020 |z 9789811555725 
035 |a (MiAaPQ)EBC30592734 
035 |a (Au-PeEL)EBL30592734 
040 |a MiAaPQ  |b eng  |e rda  |e pn  |c MiAaPQ  |d MiAaPQ 
050 4 |a QA76.9.N38 
100 1 |a Liu, Zhiyuan. 
245 1 0 |a Representation Learning for Natural Language Processing. 
250 |a 1st ed. 
264 1 |a Singapore :  |b Springer Singapore Pte. Limited,  |c 2020. 
264 4 |c ©2020. 
300 |a 1 online resource (319 pages) 
336 |a text  |b txt  |2 rdacontent 
337 |a computer  |b c  |2 rdamedia 
338 |a online resource  |b cr  |2 rdacarrier 
505 0 |a Intro -- Preface -- Acknowledgements -- Contents -- Acronyms -- Symbols and Notations -- 1 Representation Learning and NLP -- 1.1 Motivation -- 1.2 Why Representation Learning Is Important for NLP -- 1.3 Basic Ideas of Representation Learning -- 1.4 Development of Representation Learning for NLP -- 1.5 Learning Approaches to Representation Learning for NLP -- 1.6 Applications of Representation Learning for NLP -- 1.7 The Organization of This Book -- References -- 2 Word Representation -- 2.1 Introduction -- 2.2 One-Hot Word Representation -- 2.3 Distributed Word Representation -- 2.3.1 Brown Cluster -- 2.3.2 Latent Semantic Analysis -- 2.3.3 Word2vec -- 2.3.4 GloVe -- 2.4 Contextualized Word Representation -- 2.5 Extensions -- 2.5.1 Word Representation Theories -- 2.5.2 Multi-prototype Word Representation -- 2.5.3 Multisource Word Representation -- 2.5.4 Multilingual Word Representation -- 2.5.5 Task-Specific Word Representation -- 2.5.6 Time-Specific Word Representation -- 2.6 Evaluation -- 2.6.1 Word Similarity/Relatedness -- 2.6.2 Word Analogy -- 2.7 Summary -- References -- 3 Compositional Semantics -- 3.1 Introduction -- 3.2 Semantic Space -- 3.2.1 Vector Space -- 3.2.2 Matrix-Vector Space -- 3.3 Binary Composition -- 3.3.1 Additive Model -- 3.3.2 Multiplicative Model -- 3.4 N-Ary Composition -- 3.4.1 Recurrent Neural Network -- 3.4.2 Recursive Neural Network -- 3.4.3 Convolutional Neural Network -- 3.5 Summary -- References -- 4 Sentence Representation -- 4.1 Introduction -- 4.2 One-Hot Sentence Representation -- 4.3 Probabilistic Language Model -- 4.4 Neural Language Model -- 4.4.1 Feedforward Neural Network Language Model -- 4.4.2 Convolutional Neural Network Language Model -- 4.4.3 Recurrent Neural Network Language Model -- 4.4.4 Transformer Language Model -- 4.4.5 Extensions -- 4.5 Applications -- 4.5.1 Text Classification. 
505 8 |a 4.5.2 Relation Extraction -- 4.6 Summary -- References -- 5 RETRACTED CHAPTER: Document Representation -- 6 Sememe Knowledge Representation -- 6.1 Introduction -- 6.1.1 Linguistic Knowledge Graphs -- 6.2 Sememe Knowledge Representation -- 6.2.1 Simple Sememe Aggregation Model -- 6.2.2 Sememe Attention over Context Model -- 6.2.3 Sememe Attention over Target Model -- 6.3 Applications -- 6.3.1 Sememe-Guided Word Representation -- 6.3.2 Sememe-Guided Semantic Compositionality Modeling -- 6.3.3 Sememe-Guided Language Modeling -- 6.3.4 Sememe Prediction -- 6.3.5 Other Sememe-Guided Applications -- 6.4 Summary -- References -- 7 World Knowledge Representation -- 7.1 Introduction -- 7.1.1 World Knowledge Graphs -- 7.2 Knowledge Graph Representation -- 7.2.1 Notations -- 7.2.2 TransE -- 7.2.3 Extensions of TransE -- 7.2.4 Other Models -- 7.3 Multisource Knowledge Graph Representation -- 7.3.1 Knowledge Graph Representation with Texts -- 7.3.2 Knowledge Graph Representation with Types -- 7.3.3 Knowledge Graph Representation with Images -- 7.3.4 Knowledge Graph Representation with Logic Rules -- 7.4 Applications -- 7.4.1 Knowledge Graph Completion -- 7.4.2 Knowledge-Guided Entity Typing -- 7.4.3 Knowledge-Guided Information Retrieval -- 7.4.4 Knowledge-Guided Language Models -- 7.4.5 Other Knowledge-Guided Applications -- 7.5 Summary -- References -- 8 Network Representation -- 8.1 Introduction -- 8.2 Network Representation -- 8.2.1 Spectral Clustering Based Methods -- 8.2.2 DeepWalk -- 8.2.3 Matrix Factorization Based Methods -- 8.2.4 Structural Deep Network Methods -- 8.2.5 Extensions -- 8.2.6 Applications -- 8.3 Graph Neural Networks -- 8.3.1 Motivations -- 8.3.2 Graph Convolutional Networks -- 8.3.3 Graph Attention Networks -- 8.3.4 Graph Recurrent Networks -- 8.3.5 Extensions -- 8.3.6 Applications -- 8.4 Summary -- References. 
505 8 |a 9 Cross-Modal Representation -- 9.1 Introduction -- 9.2 Cross-Modal Representation -- 9.2.1 Visual Word2vec -- 9.2.2 Cross-Modal Representation for Zero-Shot Recognition -- 9.2.3 Cross-Modal Representation for Cross-Media Retrieval -- 9.3 Image Captioning -- 9.3.1 Retrieval Models for Image Captioning -- 9.3.2 Generation Models for Image Captioning -- 9.3.3 Neural Models for Image Captioning -- 9.4 Visual Relationship Detection -- 9.4.1 Visual Relationship Detection with Language Priors -- 9.4.2 Visual Translation Embedding Network -- 9.4.3 Scene Graph Generation -- 9.5 Visual Question Answering -- 9.5.1 VQA and VQA Datasets -- 9.5.2 VQA Models -- 9.6 Summary -- References -- 10 Resources -- 10.1 Open-Source Frameworks for Deep Learning -- 10.1.1 Caffe -- 10.1.2 Theano -- 10.1.3 TensorFlow -- 10.1.4 Torch -- 10.1.5 PyTorch -- 10.1.6 Keras -- 10.1.7 MXNet -- 10.2 Open Resources for Word Representation -- 10.2.1 Word2Vec -- 10.2.2 GloVe -- 10.3 Open Resources for Knowledge Graph Representation -- 10.3.1 OpenKE -- 10.3.2 Scikit-Kge -- 10.4 Open Resources for Network Representation -- 10.4.1 OpenNE -- 10.4.2 GEM -- 10.4.3 GraphVite -- 10.4.4 CogDL -- 10.5 Open Resources for Relation Extraction -- 10.5.1 OpenNRE -- References -- 11 Outlook -- 11.1 Introduction -- 11.2 Using More Unsupervised Data -- 11.3 Utilizing Fewer Labeled Data -- 11.4 Employing Deeper Neural Architectures -- 11.5 Improving Model Interpretability -- 11.6 Fusing the Advances from Other Areas -- References -- Correction to: Z. Liu et al., Representation Learning for Natural Language Processing, https://doi.org/10.1007/978-981-15-5573-2. 
588 |a Description based on publisher supplied metadata and other sources. 
590 |a Electronic reproduction. Ann Arbor, Michigan : ProQuest Ebook Central, 2023. Available via World Wide Web. Access may be limited to ProQuest Ebook Central affiliated libraries.  
655 4 |a Electronic books. 
700 1 |a Lin, Yankai. 
700 1 |a Sun, Maosong. 
776 0 8 |i Print version:  |a Liu, Zhiyuan  |t Representation Learning for Natural Language Processing  |d Singapore : Springer Singapore Pte. Limited,c2020  |z 9789811555725 
797 2 |a ProQuest (Firm) 
856 4 0 |u https://ebookcentral.proquest.com/lib/matrademy/detail.action?docID=30592734  |z Click to View