Network Security and Cryptography.

Bibliographic Details
Main Author: Musa, Sarhan M.
Format: eBook
Language:English
Published: Bloomfield : Mercury Learning & Information, 2022.
Edition:2nd ed.
Subjects:
Online Access:Click to View
Table of Contents:
  • Cover
  • Half-Title
  • Title
  • Copyright
  • Dedication
  • Contents
  • Preface
  • Chapter 1: Overview of Computer Networks
  • 1.1 Introduction
  • 1.2 Open Systems Interconnection (OSI) Model
  • 1.3 Transmission Control Protocol/Internetworking Protocol (TCP/IP) Model
  • 1.4 Hierarchical Model
  • 1.5 Computer Network Equipment
  • 1.6 Computer Network Types
  • 1.7 Computer Network Topology
  • 1.8 Exercises
  • Chapter 2: Mathematical Foundations for Computer Networks
  • 2.1 Introduction
  • 2.2 Probability Fundamentals
  • 2.2.1 Simple Probability
  • 2.2.2 Joint Probability
  • 2.2.3 Conditional Probability
  • 2.2.4 Statistical Independence
  • 2.3 Random Variables
  • 2.3.1 Cumulative Distribution Function
  • 2.3.2 Probability Density Function
  • 2.3.3 Joint Distribution
  • 2.4 Discrete Probability Models
  • 2.4.1 Bernoulli Distribution
  • 2.4.2 Binomial Distribution
  • 2.4.3 Geometric Distribution
  • 2.4.4 Poisson Distribution
  • 2.5 Continuous Probability Models
  • 2.5.1 Uniform Distribution
  • 2.5.2 Exponential Distribution
  • 2.5.3 Erlang Distribution
  • 2.5.4 Hyperexponential Distribution
  • 2.5.5 Gaussian Distribution
  • 2.6 Transformation of a Random Variable
  • 2.7 Generating Functions
  • 2.8 Central Limit Theorem
  • 2.9 Classification of Random Processes
  • 2.9.1 Continuous versus Discrete Random Process
  • 2.9.2 Deterministic versus Non-Deterministic Random Process
  • 2.9.3 Stationary versus Nonstationary Random Process
  • 2.9.4 Ergodic versus Nonergodic Random Process
  • 2.10 Statistics of Random Processes and Stationarity
  • 2.11 Time Averages of Random Processes and Ergodicity
  • 2.12 Multiple Random Processes
  • 2.13 Sample Random Processes
  • 2.13.1 Random Walks
  • 2.13.2 Markov Processes
  • 2.13.3 Birth-and-Death Processes
  • 2.13.4 Poisson Processes
  • 2.14 Renewal Processes
  • 2.15 Kendall's Notation
  • 2.16 Little's Theorem.
  • 2.17 M/M/1 Queue
  • 2.18 M/M/1 Queue With Bulk Arrivals/Service
  • 2.18.1 Mx/M/1 (Bulk Arrivals) System
  • 2.18.2 M/MY/1 (Bulk Service) System
  • 2.18.3 M/M/1/k Queueing System
  • 2.18.4 M/M/k Queueing System
  • 2.18.5 M/M/∞ Queueing System
  • 2.19 M/G/1 Queueing SYSTEM
  • 2.20 M/Ek/1 Queueing SYSTEM
  • 2.21 Networks of Queues
  • 2.21.1 Tandem Queues
  • 2.21.2 Queueing System with Splitting
  • 2.21.3 Queueing System with Feedback
  • 2.22 Jackson Networks
  • 2.23 Exercises
  • Chapter 3: Overview of Cryptography
  • 3.1 Introduction
  • 3.2 Basic Terms Related to Cryptography
  • 3.2.1 Cryptographic Primitives
  • 3.2.2 Cryptographic Protocols
  • 3.2.3 Encryption (at the Sender's End)
  • 3.2.4 Decryption (at the Recipient's End)
  • 3.3 Requirements of Secure Communication
  • 3.4 Osi Security Architecture X.800
  • 3.4.1 Security Attacks
  • 3.4.2 Security Services
  • 3.4.3 Security Mechanisms
  • 3.5 Categories of Cryptographic Systems
  • 3.6 Symmetric (or Conventional) Encryption Model
  • 3.6.1 Types of Attacks on a Conventional Encryption Scheme
  • 3.6.2 Conventional Encryption for Confidentiality
  • 3.6.3 Link Encryption
  • 3.7 Exercises
  • Chapter 4: Mathematical Foundations for Cryptography
  • 4.1 Introduction
  • 4.2 Introduction to Groups, Rings, and Fields
  • 4.2.1 Groups
  • 4.2.2 Ring
  • 4.2.3 Field
  • 4.3 Modular Arithmetic
  • 4.3.1 Residue Classes (mod n)
  • 4.3.2 Properties of Zn
  • 4.3.3 Multiplication within Set Zn
  • 4.4 Introduction to Primes and Co-Primes
  • 4.4.1 Prime Numbers
  • 4.4.2 Co-Prime Numbers or Relatively Prime Numbers
  • 4.5 Euclid's Algorithm To Determine GCD
  • 4.6 Extended Euclid's Algorithm
  • 4.7 Galols Finite Fields
  • 4.7.1 GF (p)
  • 4.7.2 Set Z*p
  • 4.7.3 Galois Finite Fields of Order 2n
  • 4.7.4 Arithmetic Operations within GF (2n)
  • 4.7.5 Addition (+) Operation within GF (23)
  • 4.7.6 Addition Inverse of GF (23).
  • 4.7.7 Multiplication (x) Operation within GF (23) Using m(x) = x3 + x2 + 1 for Reducing the Polynomials
  • 4.7.8 Multiplication Inverse within GF (23)
  • 4.7.9 Multiplicative Inverses of All Integers in GF (23)
  • 4.8 Fermat's Little Theorem
  • 4.8.1 A Corollary of Fermat's Little Theorem
  • 4.9 Euler's Totient Function
  • 4.9.1 General Formula for Computation of Totient Function ϕ(n)
  • 4.10 Euler's Theorem
  • 4.10.1 A Corollary of Euler's Theorem
  • 4.11 Prime Numbers
  • 4.11.1 Primitive Roots
  • 4.12 Discrete Logarithms
  • 4.12.1 Difficulty of Computing Discrete Logarithms
  • 4.12.2 Algorithm to Determine the Primitive Roots of a Number n
  • 4.12.3 Another Method of Determining the Primitive Roots of a Number n
  • 4.13 Primality Testing
  • 4.13.1 Miller and Rabin's Method
  • 4.14 Chinese Remainder Theorem
  • 4.14.1 Alternate Interpretation of the Chinese Remainder Theorem
  • 4.15 Exercises
  • Chapter 5: Classical Cipher Schemes
  • 5.1 Introduction
  • 5.2 Classical Substitution Ciphers
  • 5.2.1 Caesar Cipher
  • 5.2.2 Mono-Alphabetic Cipher
  • 5.2.3 Hill Cipher
  • 5.2.4 Play-Fair Cipher
  • 5.2.5 Poly-Alphabetic Cipher (Vigenere Cipher)
  • 5.2.6 One-Time Pad
  • 5.3 Transposition Ciphers
  • 5.3.1 Rail-Fence Cipher
  • 5.3.2 Rectangular Transposition Cipher
  • 5.4 Steganography
  • 5.4.1 Limitation of Steganography
  • 5.4.2 Steganography Combined with Cryptography
  • 5.5 Exercises
  • Chapter 6: Modern Symmetric Ciphers
  • 6.1 Introduction
  • 6.2 Some Basic Concepts for Symmetric Ciphers
  • 6.2.1 Concept of Binary Block Substitution
  • 6.2.2 Strength of the Substitution Cipher
  • 6.2.3 Key Size for the Simple Substitution Cipher
  • 6.3 Claude Shannon's Theory of Diffusion and Confusion
  • 6.3.1 Diffusion
  • 6.3.2 Confusion
  • 6.4 Feistel Cipher
  • 6.4.1 Strength of the Feistel Cipher
  • 6.5 Data Encryption Standard (DES).
  • 6.5.1 Description of the Critical Functions of Each Round of DES
  • 6.5.2 S-Box Transformation
  • 6.5.3 Generation of Sub-Keys (K1... K16)
  • 6.5.4 DES Decryption Algorithm
  • 6.6 Avalanche Effect
  • 6.6.1 Strength of DES
  • 6.6.2 Possible Attacks on DES
  • 6.6.3 Differential Cryptanalysis vs. Linear Cryptanalysis
  • 6.7 Multiple Des
  • 6.7.1 Double DES
  • 6.7.2 Triple DES
  • 6.7.3 Block Cipher vs. Stream Cipher
  • 6.7.4 Block/Stream Cipher Modes of Operation
  • 6.8 International Data Encryption Algorithm (IDEA)
  • 6.8.1 Description of IDEA
  • 6.8.2 Generation of Sub-Keys in IDEA
  • 6.8.3 IDEA Modes of Operation
  • 6.9 Advanced Encryption Standard (AES)
  • 6.9.1 Processing of Plaintext
  • 6.10 Key Management: Symmetric Encryption
  • 6.10.1 Secure Distribution of Keys
  • 6.10.2 Key Distribution Schemes
  • 6.11 Pseudo-Random Number Generators
  • 6.11.1 Pseudo-Random Number Generation (PRNG) Algorithms
  • 6.12 Exercises
  • Chapter 7: Public-Key Cryptography for Data Confidentiality
  • 7.1 Introduction
  • 7.2 Requirements of Public-Key Cryptography
  • 7.3 Data Confidentiality Using Public-Key Cryptography
  • 7.4 RSA Algorithm
  • 7.4.1 Main Components
  • 7.4.2 Strength of RSA
  • 7.5 Key Management Using Public-Key Cryptography
  • 7.5.1 Diffie-Hellman Algorithm for Key Distribution
  • 7.5.2 Global Parameters
  • 7.5.3 Strength of Diffie-Hellman Key-Exchange Scheme
  • 7.5.4 Types of Attacks against Diffie-Hellman
  • 7.6 El-Gamal Encryption Scheme
  • 7.6.1 Determination of Private Key and Public Key (by User "A")
  • 7.7 Elliptic Curve Cryptography (ECC)
  • 7.7.1 Elliptic Curves
  • 7.7.2 Elliptic Curves in Cryptography (ECC)
  • 7.7.3 Prime Elliptic Curves
  • 7.7.4 Prime Elliptic Curve Set
  • 7.7.5 Computation of Elliptic Curve Set E11 (1, 1)
  • 7.7.6 Rules for Addition (+) Operation over EP (a, b)
  • 7.7.7 Multiplication over the Set EP (a, b).
  • 7.7.8 Strength of ECC-Based Schemes
  • 7.7.9 ECC-Based Key-Exchange Algorithm
  • 7.7.10 Strength of ECC Key-Exchange Algorithm
  • 7.7.11 ECC-Based Encryption/Decryption Scheme
  • 7.7.12 Strength of ECC-based Encryption/Decryption Scheme
  • 7.7.13 ECC Encryption/Decryption vs. RSA
  • 7.7.14 Efficient Hardware Implementation
  • 7.8 Exercises
  • Chapter 8: Authentication Schemes
  • 8.1 Introduction
  • 8.2 What is Message Authentication?
  • 8.3 Types of Authentication Services
  • 8.3.1 Different Techniques of Message Authentication
  • 8.3.2 Digital Signatures Using Public-Key Cryptography
  • 8.3.3 Message Authentication Code (MAC)
  • 8.3.4 Many-to-One Relationship between Messages and MAC Values
  • 8.3.5 Use of MAC for Message Authentication
  • 8.3.6 Chosen Plaintext Attack on MAC
  • 8.3.7 Hash Function
  • 8.4 Application Modes of Digital Signatures
  • 8.4.1 Direct Digital Signature
  • 8.4.2 Arbitrated Digital Signature
  • 8.5 Authentication Protocols
  • 8.5.1 Mutual Authentication
  • 8.5.2 Symmetric Encryption Approaches
  • 8.5.3 Needham Schroeder Protocol
  • 8.5.4 Denning Protocol
  • 8.5.5 NEUM Protocol
  • 8.5.6 Public-Key Encryption Approaches
  • 8.5.7 One-Way Authentication
  • 8.5.8 Symmetric Encryption Approach
  • 8.5.9 Public Key Encryption Approach
  • 8.5.10 The Birthday Paradox
  • 8.5.11 Probability of Two Sets Overlapping
  • 8.5.12 Mathematical Basis for Birthday Attack
  • 8.5.13 Birthday Attack
  • 8.5.14 Verification of the Digital Signature at the Recipient End
  • 8.5.15 How to Create Many Variants of a Message
  • 8.5.16 Weak Collision Resistance
  • 8.5.17 Strengths of Hash Functions
  • 8.6 Message Digest (Hash Function) Algorithms
  • 8.6.1 MD5 Message Digest Algorithm
  • 8.6.2 Sequence of Use of Message Words in Various Rounds
  • 8.6.3 Primitive Logical Functions Used in Various Rounds
  • 8.6.4 Strength of MD5.
  • 8.7 Secure Hash Algorithm (SHA-1).