The Impact of Food Bioactives on Health : In Vitro and Ex Vivo Models.

Bibliographic Details
Main Author: Verhoeckx, Kitty.
Other Authors: Cotter, Paul., López-Expósito, Iván., Kleiveland, Charlotte., Lea, Tor., Mackie, Alan., Requena, Teresa., Swiatecka, Dominika., Wichers, Harry.
Format: eBook
Language:English
Published: Cham : Springer International Publishing AG, 2015.
Edition:1st ed.
Subjects:
Online Access:Click to View
Table of Contents:
  • Intro
  • Preface
  • General Introduction
  • Digestion and Absorption
  • Cells Present in the Intestine
  • Role of Microbiota
  • Contents
  • Part I: Gastrointestinal Digestion Models, General Introduction
  • General Introduction
  • References
  • Chapter 1: Static Digestion Models: General Introduction
  • 1.1 Definition of Concepts: Bioavailability, Bioaccessibility and Bioactivity
  • 1.2 Static Methods
  • 1.2.1 Solubility/Dialyzability
  • 1.2.2 Digestion Conditions
  • 1.3 Applications: Advantages and Disadvantages
  • 1.4 Static Versus In Vivo Digestion: Conclusions
  • References
  • Chapter 2: InfoGest Consensus Method
  • 2.1 Introduction
  • 2.2 The Oral Phase
  • 2.3 The Gastric Phase
  • 2.4 The Small Intestinal Phase
  • 2.5 Practicalities
  • 2.6 Sampling
  • 2.7 Conclusions
  • References
  • Chapter 3: Approaches to Static Digestion Models
  • 3.1 Introduction
  • 3.2 Static Models for Protein Hydrolysis
  • 3.3 Static Models for Lipid Hydrolysis
  • 3.4 Other Static Models
  • References
  • Chapter 4: Dynamic Digestion Models: General Introduction
  • 4.1 Geometry
  • 4.2 Physical Forces
  • 4.3 Biochemistry
  • References
  • Chapter 5: The TNO Gastro-Intestinal Model (TIM)
  • 5.1 Introduction
  • 5.2 Concept of TIM
  • 5.3 TIM-1
  • 5.4 TinyTIM
  • 5.5 Advanced Gastric Compartment (TIM-agc)
  • 5.6 The Use of TIM to Study the Bio-accessibility of Nutrients
  • 5.7 Protein Quality
  • 5.8 Prediction of Glycemic Response
  • 5.9 Lipids
  • 5.10 Conclusions
  • References
  • Chapter 6: Dynamic Gastric Model (DGM)
  • 6.1 Origins and Design of the DGM
  • 6.2 General Protocol for DGM Experiments
  • 6.3 Uses of the DGM
  • 6.3.1 Food-Based Research
  • 6.3.2 Pharmaceutical-Based Research
  • 6.4 Advantages, Disadvantages and Limitations
  • 6.5 Availability of the System
  • References
  • Chapter 7: Human Gastric Simulator (Riddet Model)
  • 7.1 Origins of the HGS.
  • 7.2 Model Description
  • 7.2.1 Gastric Compartment
  • 7.2.2 Gastric Motility
  • 7.2.3 Gastric Emptying
  • 7.2.4 Gastric Secretions
  • 7.2.5 Temperature Control
  • 7.3 Analysis of HGS Biomechanical Relevance
  • 7.4 Operating Protocol
  • 7.4.1 Preparation of a Food Bolus
  • 7.4.2 Gastric Processing
  • 7.5 Uses of the HGS
  • 7.5.1 Role of ACW Activity on Food Digestion
  • 7.5.2 Role of Food Material Properties
  • 7.6 Advantages and Limitations
  • 7.7 Availability of the System
  • References
  • Chapter 8: The DIDGI® System
  • 8.1 Origins and Design of the DIDGI® System
  • 8.2 Validation of DIDGI® for the Digestion of Infant Formula
  • 8.2.1 Protocol for the In Vitro Dynamic Digestion of Infant Formula Using the DIDGI® System
  • 8.2.2 In Vivo Digestion of Infant Formula on Piglets
  • 8.2.3 Comparison In Vitro/In Vivo Data
  • 8.3 Advantages, Disadvantages and Limitations
  • 8.4 Conclusion and Prospects
  • References
  • Part II: General Introduction to Cells, Cell Lines and Cell Culture
  • Introduction
  • Salt Solutions
  • Culture Media
  • Medium Quality
  • pH and CO2
  • Serum Addition
  • The Cell Culture Hood
  • Cell Culture Terminology (Fig. 1)
  • General Cell Culture Protocols
  • Trypsinisation and Subculturing of Cells
  • Passaging of Cells in Suspension Culture
  • Freezing Cells
  • The Thawing and Recovery of Cells
  • Cell Viability Testing
  • Contamination of Cell Cultures
  • References
  • Chapter 9: Epithelial Cell Models
  • General Introduction
  • 9.1 Measurement of Transepithelial Electrical Resistance (TEER)
  • 9.1.1 Basic Protocol
  • 9.1.2 Calculating Transepithelial Resistance
  • 9.2 Verification of Monolayer Integrity by Lucifer Yellow Flux
  • 9.2.1 Basic Protocol
  • 9.3 Summary
  • References
  • Chapter 10: Caco-2 Cell Line
  • 10.1 Origin
  • 10.2 Features and Mechanisms
  • 10.3 Stability, Consistency and Reproducibility.
  • 10.4 Relevance to Human In Vivo Situation
  • 10.5 General Protocols for Caco-2 Cells
  • 10.5.1 General Maintenance
  • 10.5.2 Protocol for Polarizing Caco-2 Cells in Tissue Culture Inserts
  • 10.5.3 Troubleshooting Guide for Transport Experiments Across Caco-2 Monolayers
  • 10.6 Applications
  • 10.7 Advantages and Disadvantages
  • 10.8 Conclusion
  • References
  • Chapter 11: HT29 Cell Line
  • 11.1 Origin
  • 11.2 Features and Mechanisms
  • 11.3 Stability, Consistency and Reproducibility
  • 11.4 Relevance to Human In Vivo Situation
  • 11.5 General Protocol for HT29-MTX Cells
  • 11.5.1 Cell Maintenance Protocol
  • 11.5.2 Experimental Protocol for Test Compounds
  • 11.5.2.1 Study of the Mucin-Stimulating Activity
  • 11.5.2.2 Evaluation of Transepithelial Absorption by Transwell® Inserts
  • 11.6 Experimental Read Out
  • 11.6.1 Functionality Studies
  • 11.6.2 Transport Studies
  • 11.6.3 Microorganisms Survival, Adhesion or Invasion
  • 11.7 Conclusions
  • References
  • Chapter 12: The IPEC-J2 Cell Line
  • 12.1 Origin
  • 12.2 Special Features/Morphology/Receptors
  • 12.3 Stability/Consistency/Reproducibility of the System
  • 12.4 Relevance to Human In Vivo Situation
  • 12.5 General Protocol
  • 12.5.1 Culture Conditions
  • 12.5.2 Experimental Readout
  • 12.5.3 Sample Preparation
  • 12.6 Conclusion
  • References
  • Chapter 13: Co-cultivation of Caco-2 and HT-29MTX
  • 13.1 Origin, Features and Mechanisms
  • 13.2 Stability/Consistency and Reproducibility
  • 13.3 Relevance to the Human In Vivo Situation
  • 13.4 General Protocol
  • 13.5 Assess Viability
  • 13.6 Experimental Readout
  • 13.7 Advantages, Disadvantages and Limitations
  • 13.8 Conclusions
  • References
  • Part III: Innate and Adaptive Immune Cells: General Introduction Iván López-Expósito
  • Monocytes and Macrophages
  • Dendritic Cells
  • Human Peripheral Blood Mononuclear Cells.
  • T Lymphocytes or T-Cells
  • References
  • Chapter 14: THP-1 and U937 Cells
  • 14.1 Origin and Some Features of THP-1 and U937 Cells
  • 14.2 Stability, Consistency and Reproducibility of the System
  • 14.3 Relevance to Human In Vivo Situation
  • 14.4 Other Models with the Same Applicability
  • 14.5 General Protocol of Culturing THP-1 Cells
  • 14.6 Differentiation of THP-1 and U937 Monocytes into Macrophages
  • 14.7 Differentiation of THP-1 and U937 Monocytes into Dendritic Cells
  • 14.8 Controls to Test Viability and Performance of the Model
  • 14.9 Critical Notes
  • 14.10 Read-Out of the System
  • References
  • Chapter 15: Peripheral Blood Mononuclear Cells
  • 15.1 Origin
  • 15.2 Features and Mechanisms
  • 15.3 Stability, Consistency and Reproducibility
  • 15.4 Relevance to Human In Vivo Situation
  • 15.5 General Protocol
  • 15.5.1 Study of Proliferative/Cytotoxic Activity
  • 15.5.2 Study of Inflammatory Responses
  • 15.6 Assess Viability
  • 15.7 Experimental Read Out
  • 15.8 Advantages, Disadvantages and Limitations of the System
  • 15.9 Conclusions
  • References
  • Chapter 16: PBMC-Derived T Cells
  • 16.1 Introduction and Origin
  • 16.2 Features and Mechanisms
  • 16.3 Applications of T Cell Cultures
  • 16.4 General Protocol
  • 16.4.1 T Cell Isolation Protocols
  • 16.4.2 Indirect Positive Isolation of Human CD4+ T
  • 16.4.2.1 Preparation of Cells and Antibodies
  • 16.4.2.2 Coating of PBMCs with CD4 Antibody
  • 16.4.2.3 Magnetic Beads Washing Procedure
  • 16.4.2.4 Separation of T Cells
  • 16.4.2.5 Detachment of T Cells from Beads
  • 16.5 Assess Viability
  • 16.6 Samples
  • 16.7 Experimental Readouts
  • References
  • Chapter 17: Dendritic Cells
  • 17.1 Origin
  • 17.2 Features and Mechanisms
  • 17.2.1 DC Subsets
  • 17.2.1.1 Blood DCs
  • 17.2.1.2 Mucosal DCs
  • 17.2.1.3 Monocyte-Derived DCs
  • 17.3 General Protocols
  • 17.3.1 DC Cell Lines.
  • 17.3.2 Isolating Primary DCs from Blood
  • 17.3.3 CD34+-Derived DCs
  • 17.3.4 Monocyte-Derived DCs
  • 17.4 Asses Viability
  • 17.5 Experimental Readout
  • 17.5.1 Co-stimulation
  • 17.5.2 Cytokine Production
  • 17.5.3 Other DC Readouts
  • 17.6 In Vitro Studies on Food Bioactives Using DCs (Table 17.3)
  • 17.7 Critical Notes
  • References
  • Chapter 18: Co-culture Caco-2/Immune Cells
  • 18.1 Origin, Features and Mechanisms
  • 18.2 Relevance to Human In Vivo Situation
  • 18.2.1 Co-culture Caco-2 and Dendritic Cells
  • 18.2.2 Co-culture Caco-2 and B-cells (Raji)
  • 18.3 Stability, Consistency and Reproducibility
  • 18.4 General Protocol
  • 18.4.1 Co-culture of Caco-2/Human Monocyte Derived DCs (Include Contact Dependent Events)
  • 18.4.2 Caco-2/Human Monocyte Derived DCs (Soluble Factors)
  • 18.4.3 Caco-2/THP-1 (Soluble Factors)
  • 18.4.4 Caco-2/PBMCs (Soluble Factors)
  • 18.4.5 Caco-2/B Cells
  • 18.5 Assess Viability
  • 18.6 Experimental Readout
  • 18.7 Advantages, Disadvantages and Limitations
  • 18.8 Conclusions
  • References
  • Part IV: Enteroendocrine Cell Models: General Introduction
  • References
  • Chapter 19: STC-1 Cells
  • 19.1 Origin
  • 19.2 Features and Mechanisms
  • 19.3 Stability, Consistency and Reproducibility
  • 19.4 Relevance to Human In Vivo Situation
  • 19.5 General Protocol
  • 19.5.1 Cell Maintenance Protocol
  • 19.5.2 Experimental Protocol for Test Compounds
  • 19.6 Assess Viability
  • 19.7 Experimental Read out
  • 19.8 Conclusions
  • References
  • Chapter 20: NCI-H716 Cells
  • 20.1 Introduction
  • 20.2 Origin
  • 20.3 Features and Mechanisms
  • 20.4 Stability/Consistency/Reproducibility
  • 20.5 Relevance to the Human L-Cell In Vivo
  • 20.6 General Protocol
  • 20.6.1 Cell Maintenance Protocol
  • 20.6.2 Experimental Protocol for Test Compounds
  • 20.7 Assess Viability
  • 20.8 Experimental Readout
  • 20.9 Conclusions
  • References.
  • Chapter 21: Murine GLUTag Cells.