Gaussian Processes for Positioning Using Radio Signal Strength Measurements.
Main Author: | |
---|---|
Format: | eBook |
Language: | English |
Published: |
Linköping :
Linkopings Universitet,
2019.
|
Edition: | 1st ed. |
Series: | Linköping Studies in Science and Technology. Dissertations Series
|
Subjects: | |
Online Access: | Click to View |
Table of Contents:
- Intro
- Abstract
- Populärvetenskaplig sammanfattning
- Acknowledgments
- Contents
- Notation
- 1 Introduction
- 1.1 Application Examples
- 1.2 Main Contributions
- 1.3 Thesis outline
- 1.3.1 Outline of Part I
- 1.3.2 Outline of Part II
- I Background
- 2 Estimation
- 2.1 Static Estimators
- 2.1.1 Best Linear Unbiased Estimator
- 2.1.2 Maximum Likelihood Estimator
- 2.1.3 Least Squares
- 2.2 Dynamic Estimators
- 2.3 Sequential Monte Carlo Methods for State Inference
- 2.3.1 Particle Filter
- 2.3.2 Particle Smoother
- 3 Modeling
- 3.1 Linear Regression for Parametric Modeling
- 3.2 Gaussian Process for Non-parametric Modeling
- 4 The Cramér-Rao Bound
- 4.1 Cramér-Rao Bound for Static Estimator
- 4.2 Cramér-Rao Bound for Dynamic Estimator
- 5 Concluding Remarks
- 5.1 Summary of Contribution
- 5.2 Some Insights into Future Work
- Bibliography
- II Publications.